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Preface

This book is designed as an introduction to “abstract” algebra, particularly
for students who have already seen a little calculus, as well as vectors and
matrices in 2 or 3 dimensions. The emphasis is not placed on abstraction
for its own sake, or on the axiomatic method. Rather, the intention is to
present algebra as the main tool underlying discrete mathematics and the
digital world, much as calculus was accepted as the main tool for continuous
mathematics and the analog world.

Traditionally, treatments of algebra at this level have faced a dilemma:
groups first or rings first? Presenting rings first immediately offers familiar
concepts such as polynomials, and builds on intuition gained from working
with the integers. On the other hand, the axioms for groups are less complex
than the axioms for rings. Moreover, group techniques, such as quotients
by normal subgroups, underlie ring techniques such as quotients by ideals.
The dilemma is resolved by emphasizing semigroups and monoids along with
groups. Semigroups and monoids are steps up to groups, while rings have
both a group structure and a semigroup or monoid structure.

The first three chapters work at the concrete level: numbers, functions,
and equivalence. Semigroups of functions and groups of permutations appear
early. Functional composition, cycle notation for permutations, and matrix
notation for linear functions provide techniques for practical computation,
avoiding less direct methods such as generators and relations or table look-
up. Equivalence relations are used to introduce rational numbers and modular
arithmetic. They also enable the First Isomorphism Theorem to be presented
at the set level, without the requirement for any group structure. If time is
short (say just one quarter), the first three chapters alone may be used as a
quick introduction to algebra, sufficient to exhibit irrational numbers or to
gain a taste of cryptography.

Abstract groups and monoids are presented in the fourth chapter. The
examples include orthogonal groups and stochastic matrices, while concepts
such as Lagrange’s Theorem and groups of units of monoids are covered. The
fifth chapter then deals with homomorphisms, leading to Cayley’s Theorem
reducing abstract groups to concrete groups of permutations. Rings form
the topic of the sixth chapter, while integral domains and fields follow in the
seventh. The first six or seven chapters provide basic coverage of abstract
algebra, suitable for a one-semester or two-quarter course.

Subsequent chapters deal with slightly more advanced topics, suitable for
a second semester or third quarter. Chapter 8 delves deeper into the theory

ix
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of rings and fields, while modules — particularly vector spaces and abelian
groups — form the subject of Chapter 9. Chapter 10 is devoted to group
theory, and Chapter 11 gives an introduction to quasigroups.

The final four chapters are essentially independent of each other, so that
instructors have the freedom to choose which topics they wish to emphasize.
In particular, the treatment of fields in Chapter 8 does not make use of any of
the concepts of linear algebra, such as vector space, basis, or dimension, which
are covered in Chapter 9. For a one-semester introduction to groups, one could
replace Chapter 6 with Chapter 10, using the field of integers modulo a prime
in the examples that call for a finite field.

Each chapter includes a range of exercises, of varying difficulty. Chapter
notes point out variations in notation and approach, or list the names of
mathematicians that are used in the terminology. No biographical sketches are
given, since libraries and the Internet can offer much more detail as required.

A special feature of the book is the inclusion of the “Study Projects” at the
end of each chapter. The use of these projects is at the instructor’s discretion.
Some of them may be incorporated into the main presentation, offering typical
applications or extensions of the algebraic topics. Some are coherent series
of exercises, that could be assigned along with the other problems, or used
for extra credit. Some projects are suitable for group study by students,
occasionally involving some outside research.

I have benefited from many discussions with my students and colleagues
about algebra, its presentation and application. Specific acknowledgments are
due to Mark Ciecior, Dan Nguyen, Jessica Schuring, Dr. Sungyell Song, Shibi
Vasudevan, and anonymous referees for helpful comments on a preliminary
version of the book. The original impetus for the project came from Bob
Stern at Taylor & Francis. I am grateful to him, and the publishing staff, for
bringing it to fruition.



Chapter 1

NUMBERS

Algebra begins as the art of working with numbers. The integers are the
whole numbers, positive, negative, and zero. Put together, they form the set

Z = {. . . ,−2,−1, 0, 1, 2, 3, . . . } (1.1)

(the letter Z coming from the German word Zahlen, meaning “numbers”).
The natural numbers are the nonnegative integers, including zero. They are
“natural” because they are the possible numbers of elements in a finite set.
For example, 4 is the number of elements of the set

{♠,♥,♦,♣} (1.2)

of suits in a deck of cards, while 13 is the number of elements of the set

{A♥, K♥, Q♥, J♥, 10♥, 9♥, 8♥, 7♥, 6♥, 5♥, 4♥, 3♥, 2♥} (1.3)

of cards in the suit ♥ of hearts. Note that 0 is the number of elements in the
empty set ∅ or { }. The natural numbers form the set

N = {0, 1, 2, 3, . . . } . (1.4)

Another set of numbers familiar from calculus is the set R of real numbers,
like −17,

√
2 = 1.41421 . . . , e = 2.71828 . . . , π = 3.14159 . . . , and so on. It is

hard to display the set of real numbers as a list of elements between braces,
like the sets (1.1)–(1.4) above. Instead, the set R is pictured as the real line

-
−4 −3 −2 −1 0 1 2 3 4

(like an axis in the graph of a function). Pictures like this are useful as
geometric visualizations of real numbers. At times similar pictures can even
be useful for natural numbers or integers, since these numbers also happen to
be real numbers.

1.1 Ordering numbers

In calculus, order relations between real numbers are crucial, for instance
when we want to find the maximum value of a function over a certain range.

1



2 Introduction to Abstract Algebra

Recall that x < y (read “x less than y”) means y − x is positive, while x ≤ y
(read “x less than or equal to y”) means that y − x is nonnegative. We can
also write y > x (“x greater than y”) instead of x < y, or y ≥ x (“x greater
than or equal to y”) instead of x ≤ y. In the real line picture, with the positive
numbers going off to the right, the relation x < y becomes an arrow x −→ y.
It is often helpful to signify the relation x ≤ y with an arrow from x to y,
without requiring the arrow to go horizontally from left to right.

Since algebra also needs to work with order relations between numbers, it
is important to know the rules for manipulating them. The first rule is called
reflexivity :

x ≤ x (1.5)

for any real (or integral, or natural) number x. This particular rule doesn’t
seem to be saying very much, but it often serves as a place-holder. The second
rule is transitivity :

(
x ≤ y and y ≤ z

)
implies x ≤ z (1.6)

for any real (or integral, or natural) numbers x, y, and z. If Xavier can’t beat
Yerkes, and Yerkes can’t beat Zandor, then Xavier can’t beat Zandor either.
Why does (1.6) hold? Well, if x ≤ y and y ≤ z, the quantities y−x and z− y
are nonnegative. In that case, so is their sum z − x, meaning that x ≤ z.
Transitivity makes a natural arrow picture:

¡
¡¡µ

x

y

@
@@R

z

implies
¡

¡¡µ

x

y

@
@@R

z-

. . . “completing the triangle.” The final rule for the order relation is the one
that yields conclusions of proofs, when you want to show that two numbers
are actually equal:

(
x ≤ y and y ≤ x

)
implies x = y (1.7)

for real numbers x and y. This rule is called antisymmetry . If Xavier can’t
beat Yerkes, and Yerkes can’t beat Xavier either, then Xavier and Yerkes will
tie.

Rules for an order relation

(R) Reflexivity: x ≤ x

(T) Transitivity: x ≤ y and y ≤ z imply x ≤ z

(A) Antisymmetry: x ≤ y and y ≤ x imply x = y



NUMBERS 3

As an illustration of the use of the rules, here’s a proposition with its proof.

PROPOSITION 1.1 (Squeezing.)
Suppose x, y, and z are real numbers. If x ≤ y ≤ z ≤ x, then x = z.

PROOF Since x ≤ y ≤ z, transitivity shows that x ≤ z. But also z ≤ x,
so antisymmetry gives x = z.

1.2 The Well-Ordering Principle

Compare (1.1) with (1.4). The elements of Z in (1.1) stretch off arbitrarily
far to the left inside the braces: There is no smallest integer. In a version
of the schoolyard game “My Dad earns more than your Dad,” consider two
players trying to name the smaller integer. Whatever number the first player
names, say −10, 000, 000, the second player can always choose −10, 000, 001
or something even more negative. With the natural numbers, the situation is
different. It is summarized by the following statement, the so-called

Well-Ordering Principle:

Each nonempty subset S of N has a least element inf S.

(Compare Exercise 7. The mathematical notation inf S stands for the infimum
of S.) Of course, the principle is only required for infinite subsets S. For finite
nonempty subsets S, the least element inf S, in this case often denoted as the
minimum min S, can be located easily (Project 2).

Example 1.2 (An application of the Well-Ordering Principle.)
Suppose S = {n ∈ N | 10n < 1

2nn}, the set of natural numbers n for which
the power 10n is less than half the power nn. The set S is nonempty, indeed
infinite, since as n increases beyond 10, the power nn grows faster than 10n.
(Formally, limn→∞(1

2nn
/
10n) = ∞.) The Well-Ordering Principle guarantees

that S has a least element inf S. You are invited to find it in Exercise 5.

In one of its main applications, the Well-Ordering Principle underwrites
the techniques known as recursion and mathematical induction. For example,
consider the definition of the factorial n! of a natural number n. This quantity
is usually defined recursively as follows:

0! = 1 , (n + 1)! = (n + 1) · n!



4 Introduction to Abstract Algebra

How can we be sure that the definition is complete, that it will not leave a
quantity such as 50001200! undefined?

For generality, consider a property P (n) of a natural number n, say the
property that n! is defined by the given recursive procedure.

• The Induction Basis is the statement that the property P (0) holds.

• The Induction Step is the statement that truth of the property P (n)
implies the truth of the property P (n + 1).

• The Principle of Induction states: The Induction Basis and Induction
Step together guarantee that P (n) holds for all natural numbers n.

To justify the Principle of Induction, suppose that it goes wrong. In other
words, the set

S = {n | P (n) is false }
is nonempty. By the Well-Ordering Principle, the set S has a least element
s. The Induction Basis shows that s cannot be 0. Thus s > 0, and s− 1 is a
natural number. Since s − 1 does not lie in S, the property P (s − 1) holds.
The Induction Step then gives the contradiction that P (s) is true. Thus the
Principle of Induction cannot go wrong.

Example 1.3 (A model proof by induction.)
Let P (n) be the statement that the identity

12 + 22 + 32 + . . . + (n− 1)2 + n2 =
n(n + 1)(2n + 1)

6
(1.8)

holds for a natural number n. As Induction Basis, note that (1.8) reduces to
the triviality 0 = 0 for n = 0, so P (0) is true. For the Induction Step, suppose
that P (n) is true, so that (1.8) holds as written. Then

12 + 22 + 32 + . . . + (n− 1)2 + n2 + (n + 1)2

=
n(n + 1)(2n + 1)

6
+ (n + 1)2

=
n(n + 1)(2n + 1) + 6(n + 1)2

6

=
(n + 1)(2n2 + 7n + 6)

6

=
(n + 1)(n + 2)

(
2(n + 1) + 1

)

6
,

so that P (n + 1) is true. This proves (1.8) by induction.
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1.3 Divisibility

The set Z of integers is a subset of the set R of real numbers; so integers can
certainly be compared using the order relation ≤ for real numbers. However,
in many cases a different relation between integers is more relevant. This is
the relation of divisibility . Given two integers m and n, the integer m is said
to be a multiple of n if there is an integer r such that m = r ·n. For example,
946 is a multiple of 11, since 946 = 86 · 11. Even integers are the multiples
of 2. Zero is a multiple of every integer. Turning the relationship around, an
integer n is said to divide an integer m, or to be a divisor of m, if m is a
multiple of n. Summarizing,

n divides m is equivalent to m is a multiple of n . (1.9)

The statement “n divides m” is written symbolically as n | m.
It is useful to compare the two equivalent concepts of (1.9). Divisibility is

most convenient for formulating mathematical claims. On the other hand, it
is generally easier to prove those claims by working with the corresponding
equation m = r · n from the relation of being a multiple. As an example,
consider the proof that the divisibility relation | on Z shares the reflexivity
(R) and transitivity (T) properties of the relation ≤ on R (page 2).

PROPOSITION 1.4 (Divisibility on Z is reflexive and transitive.)
Let m, n, and p be integers. Then:

(R) m | m;

(T)
(

m | n and n | p )
implies m | p.

PROOF (R) For each integer m, the equation m = 1 ·m holds, so m is a
multiple of m.

(T) Since m | n, there is an integer r with n = rm. Since n | p, there is an
integer s with p = sn. Then

p = sn = s(rm) = (sr)m

is a multiple of m, so m | p.

However, the relation | on Z is not antisymmetric. For example, 5 | −5 since
−5 = (−1) · 5, and −5 | 5 since 5 = (−1) · (−5). Nevertheless, 5 6= −5. The
situation changes when we restrict ourselves to natural numbers. We regain
all three properties: reflexivity (R), transitivity (T), and antisymmetry (A).
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PROPOSITION 1.5 (Divisibility on N is an order relation.)
Let m, n, and p be natural numbers. Then:

(R) m | m;

(T)
(

m | n and n | p )
implies m | p;

(A)
(

m | n and n | m )
implies m = n.

The proof of Proposition 1.5 is assigned as Exercise 14. The proposition
means that divisibility relations between natural numbers may be displayed
with arrow diagrams, just like the order relations between real numbers. For
example, the set

{1, 2, 3, 4, 6, 12}
of divisors of 12 is exhibited in Figure 1.1. The diagram explicitly displays
divisibilities such as 3 | 6 with arrows: 3 −→ 6. Other relations, such as
3 | 12 or 4 | 4, are implicit from the transitivity and reflexivity guaranteed by
Proposition 1.5.

6

1

3

- 2

6
6-

- 4

12-

6

FIGURE 1.1: The positive divisors of 12.

1.4 The Division Algorithm

To check whether a positive integer d divides a given integer a (positive,
negative, or zero), a formal procedure known as the Division Algorithm is
available. Given the

input : a positive integer d (the divisor) and (1.10)
an integer a (the dividend), (1.11)

the Division Algorithm (Figure 1.2) produces the

output : an integer q (the quotient) and (1.12)
an integer r (the remainder), (1.13)
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satisfying the following:

a = dq + r ; (1.14)
0 ≤ r < d . (1.15)

For example, given the divisor 5 and dividend 37, the algorithm produces 7
as the quotient and 2 as the remainder: 37 = 5 · 7 + 2, with 0 ≤ 2 < 5. Given
divisor 5 and dividend −42, it produces −42 = 5 · (−9) + 3, with 0 ≤ 3 < 5.
In general, the dividend a is a multiple of the divisor d if and only if the
remainder r is zero.

-
dividend a

divisor d

-

a = dq + r

0 ≤ r < d

-
quotient q

remainder r

-

FIGURE 1.2: The Division Algorithm.

The word dividend in (1.11) means “the thing that is to be divided,” like
the profits of a company being divided among the shareholders. The word
quotient in (1.12) is Latin for “How many times?” (the divisor d has to be
added to itself to approach or equal the dividend). Then the remainder r is
what is left after subtracting q times the divisor d from the dividend a.

The following proposition, with its proof, is a guarantee that the Division
Algorithm will always perform as claimed. The proof relies on the use of the
Well-Ordering Principle as presented in Section 1.2.

PROPOSITION 1.6
Given a dividend a as in (1.11), and a divisor d as in (1.10), there is a unique
quotient q as in (1.12) and a unique remainder r as in (1.13), such that the
equation (1.14) and inequalities (1.15) hold.

PROOF Define a subset S of N by

S = {a− dk | k ∈ Z, a− dk ≥ 0} (1.16)

— the set all integers of the form a − dk in which k is an element of the set
Z of integers, and such that the inequality a− dk ≥ 0 is satisfied.
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Claim 1: The set S is nonempty.

If a ≥ 0, then a− d · 0 = a is an element of S. Now d is a positive integer,
so d− 1 ≥ 0. Then if a < 0, we have a− da = (−a)(d− 1) ≥ 0, as a product
of two nonnegative integers. Thus a− da is an element of S in this case.

With Claim 1 established, we can appeal to the Well-Ordering Principle.
It tells us that the nonempty subset S of N has a least element inf S. Set

r = inf S . (1.17)

Since r is an element of S, we have 0 ≤ r, the left-hand inequality in (1.15).
And again since r is an element of S, we know that it is of the form r = a−dk
for some integer k. Set the quotient q to be the integer with

r = a− dq . (1.18)

Adding dq to both sides of this equation yields (1.14).

Claim 2: r < d.

Could Claim 2 possibly be false? Could it happen that r ≥ d? Well, if so,
r − d is still a natural number. But by (1.18),

r − d = a− d(q + 1) ,

so r − d would be a member of S strictly less than r. That would contradict
(1.17), so the assumption that led to the contradiction, namely r ≥ d, must
be false. This shows that Claim 2 must be true, and verifies the right-hand
inequality in (1.15).

Claim 3: The integers q and r satisfying (1.14) and (1.15) are unique.

Suppose a = dq′ + r′ for integers q′ and r′ with 0 ≤ r′ < d. Now r′ < r
cannot be true, for otherwise we would have 0 ≤ r′ = a − dq′ as an element
of S less than r, the least element of S. Conversely, r < r′ cannot be true
either, for then we would have q > q′, i.e., (q − q′) > 0 and (q − q′) ≥ 1, with

r′ = r + (r′ − r) = r +
(
(a− dq′)− (a− dq)

)
= r + d(q − q′) ≥ d ,

in contradiction to r′ < d. Thus r = r′ and q = q′.
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1.5 Greatest common divisors

Let a and b be nonzero integers. A positive integer c is said to be a common
divisor of a and b if it divides both a and b:

c | a and c | b .

For example, consider the divisors of 72 displayed in Figure 1.3. It is apparent
that 4 is a common divisor of 24 and 36.

1

6

-

3 -

6

2

6
6

6

-

-

4 -

12 -

6

6

8

6
24

6
9 - 18 - 36 - 72

FIGURE 1.3: The positive divisors of 72.

There are other common divisors of 24 and 36, such as 2 and 12.

DEFINITION 1.7 (Greatest common divisor, relatively prime.)
Let a and b be nonzero integers.

(a) A positive integer d is the greatest common divisor (GCD) of a and b if

• d is a common divisor of a and b, and

• if c is a common divisor of a and b, then c ≤ d.

(b) The integers a and b are said to be relatively prime or coprime if their
greatest common divisor is 1.

For instance, 12 is the greatest common divisor of 24 and 36. The numbers
8 and 9 are relatively prime. Note that 1 is coprime to every nonzero integer.

Why should the greatest common divisor of two nonzero integers a and b be
guaranteed to exist? Well, the set of common divisors of a and b is a finite set
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S, the intersection of the finite sets of positive divisors of a and b. (Compare
Exercise 11.) The greatest common divisor is then just the maximum element
of the finite set S. Since each pair a, b of nonzero integers has a uniquely
defined greatest common divisor, we may use a functional notation

gcd(a, b)

to denote that number. For example, gcd(24, 36) = 12. Note that

gcd(a, a) = |a| , (1.19)

gcd(b, a) = gcd(a, b) , (1.20)

and
gcd(a, b) = gcd(−a, b) = gcd(a,−b) = gcd(−a,−b) (1.21)

for nonzero integers a and b (compare Exercise 26).
The defining properties of the greatest common divisor of a pair of nonzero

integers a and b may be summarized as follows:

d = gcd(a, b) if and only if:
• d | a and d | b ; (1.22)

• (
c | a and c | b )

implies c ≤ d . (1.23)

1.6 The Euclidean Algorithm

Given nonzero integers a and b, how can we compute gcd(a, b)? By (1.21),
it is sufficient to consider the case where a and b are both positive. By (1.19),
it is sufficient to consider the case where a and b are distinct. And finally,
by (1.20), it is sufficient to consider the case where a > b. Then for positive
integers a > b, the positive integer gcd(a, b) is produced by the Euclidean
Algorithm.

In fact, the Euclidean Algorithm is capable of more. Borrowing terminology
from matrix theory or linear algebra, define a real number z to be an integral
linear combination of real numbers x and y if it can be expressed in the form

z = lx + my (1.24)

with integer coefficients l and m. Much of the significance of integral linear
combinations resides in the following simple result, whose proof is assigned as
Exercise 27.

PROPOSITION 1.8 (Common divisor divides linear combination.)
A common divisor c of integers n and p is a divisor of each integral linear

combination ln + mp of n and p.



NUMBERS 11

The Euclidean Algorithm not only produces gcd(a, b), but if required
may also be used to exhibit gcd(a, b) as an integral linear combination of a
and b. Given integers a > b > 0, the algorithm works with a strictly decreasing
sequence

r−1 > r0 > r1 > r2 > · · · > rk > rk+1 = 0 (1.25)

of natural numbers. Following the initial specification

r−1 = a and r0 = b ,

the natural numbers (1.25) are produced by a series of steps. For 0 ≤ i ≤ k,
Step (i) applies the Division Algorithm with ri−1 as the dividend and ri as
the divisor:

ri−1 = qi+1ri + ri+1 , (1.26)

obtaining ri+1 as the remainder with ri > ri+1 ≥ 0 (and some integer qi+1

as the quotient). The Euclidean Algorithm makes its last call to the Division
Algorithm in Step (k), obtaining the remainder rk+1 = 0. At that time the
greatest common divisor gcd(a, b) is output as rk, the last nonzero remainder
in the list (1.25).

Why is rk = gcd(a, b), and how is rk produced as a linear combination of a
and b.? To answer these questions, it is helpful to rewrite (1.26) as the matrix
equation [

ri−1

ri

]
=

[
qi+1 1
1 0

] [
ri

ri+1

]
(1.27)

holding for 0 ≤ i ≤ k. (Compare Section 2.3, page 28, for a review of matrix
multiplication.) Note that (1.27) is an equality between 2-dimensional column
vectors with integral entries. Equality of the bottom entries is trivial, while
(1.26) is the equality between the top entries. Now

[
0 1
1 −qi+1

] [
qi+1 1
1 0

]
=

[
1 0
0 1

]
=

[
qi+1 1
1 0

] [
0 1
1 −qi+1

]
,

so (1.27) is equivalent to the matrix equation
[

ri

ri+1

]
=

[
0 1
1 −qi+1

] [
ri−1

ri

]
(1.28)

for 0 ≤ i ≤ k. Repeated use of (1.28) gives
[

rk

rk+1

]
=

[
0 1
1 −qk+1

]
. . .

[
0 1
1 −q1

] [
r−1

r0

]
=

[
s t
u v

] [
r−1

r0

]

for integers s and t (computed by multiplying the 2×2 matrices in the middle
term), so rk is expressed as the integral linear combination

rk = sr−1 + tr0 = sa + tb (1.29)
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of a and b. By Proposition 1.8, any common divisor c of a and b is a divisor of
rk, confirming that rk satisfies the requirement (1.23) for the greatest common
divisor of a and b. Finally, repeated use of (1.27) gives

[
a
b

]
=

[
r−1

r0

]
=

[
q1 1
1 0

]
. . .

[
qk+1 1

1 0

] [
rk

rk+1

]
=

[
s′ t′

u′ v′

] [
rk

0

]

for integers s′, t′, u′, and v′, so that a = s′rk and b = u′rk. This means that
rk | a and rk | b. Thus rk satisfies the requirement (1.22) for the greatest
common divisor of a and b.

Now we know that rk = gcd(a, b), the import of the equation (1.29) may
be recorded for future reference as follows. (Compare Exercise 28.)

PROPOSITION 1.9 (GCD as an integral linear combination.)
Let a and b be nonzero integers. Then the greatest common divisor gcd(a, b)
may be expressed as an integral linear combination of a and b.

Example 1.10 (A run of the Euclidean Algorithm.)
Consider the determination of gcd(7, 5) with the Euclidean Algorithm. The

calls to the Division Algorithm are as follows:

Step (0) : 7 = 1 · 5 + 2
Step (1) : 5 = 2 · 2 + 1
Step (2) : 2 = 2 · 1 + 0

Thus gcd(7, 5) emerges as 1, the remainder from the penultimate Step (1).
The matrix equations (1.27) become

[
7
5

]
=

[
1 1
1 0

] [
5
2

]
,

[
5
2

]
=

[
2 1
1 0

] [
2
1

]
,

[
2
1

]
=

[
2 1
1 0

] [
1
0

]
.

The matrix equations (1.28) become

[
1
0

]
=

[
0 1
1 −2

] [
2
1

]
,

[
2
1

]
=

[
0 1
1 −2

] [
5
2

]
,

[
5
2

]
=

[
0 1
1 −1

] [
7
5

]
.

Thus [
1
0

]
=

[
0 1
1 −2

] [
0 1
1 −2

] [
0 1
1 −1

] [
7
5

]
=

[−2 3
5 −7

] [
7
5

]
,

whence gcd(7, 5) = 1 = (−2) · 7 + 3 · 5.
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1.7 Primes and irreducibles

The positive number 35 can be reduced to a product 5 ·7 of smaller positive
numbers 5 and 7. On the other hand, neither 5 nor 7 can be reduced further.
In fact, if 5 = a · b for positive integers a and b, then a = 1 and b = 5 or a = 5
and b = 1. We define a positive integer p to be irreducible if p > 1 and

0 < d | p implies
(

d = 1 or d = p
)

(1.30)

for integers d. Irreducibility is an “internal” or “local” property of a positive
integer p, only involving the finite set of positive divisors of p.

Now look outwards rather than inwards. The positive number 35 may divide
a product, without necessarily dividing any of the factors in that product. For
example, 35 divides 7 · 10, but 35 does not divide 7 or 10. On the other hand,
5 divides the product 7 · 10, and then 5 divides the factor 10 in the product.
We define a positive integer p to be prime if p > 1 and

p | a · b implies
(

p | a or p | b )
(1.31)

for any integers a and b. Primality may be considered as an “external” or
“global” property of a positive integer p, since it involves arbitrary integers a
and b. The two properties are summarized as follows:

Properties of an integer p > 1:

(internal) irreducible: 0 < d | p implies
(

d = 1 or d = p
)

(external) prime: p | a · b implies
(

p | a or p | b )

It is a feature of the integers that the internal concept of irreducibility
agrees with the external concept of primality.

PROPOSITION 1.11 (“Prime” ≡ “irreducible” for integers.)
Let p > 1 be an integer.

(a) If p is prime, then it is irreducible.

(b) If p is irreducible, then it is prime.

PROOF (a): Suppose p is prime and 0 < d | p, say p = d′d for some
positive integer d′. Then p | d′d. Since p is prime, it follows that p | d′ or
p | d. In the latter case, d | p and p | d, so d = p by antisymmetry. In the
former case, the same argument (replacing d by d′) shows d′ = p. Then d = 1.
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(b): Suppose p is irreducible and p | a · b, say ab = pk for some integer k.
Suppose p does not divide a. It will be shown that p | b. Since p is irreducible,
its only positive divisors are 1 and p. Thus gcd(p, a) = 1, for gcd(p, a) = p
would mean p | a. Using Proposition 1.9, write gcd(p, a) as an integral linear
combination

1 = lp + ma

of p and a. Postmultiplying by b gives

b = lpb + mab

= lpb + mpk = p(lb + mk) ,

so that p | b as required.

With Proposition 1.11 proved, prime numbers (as in Figure 1.4) may be
characterized equally well by either the irreducibility (1.30) or the primality
(1.31). (See the Notes to this section on page 23.)

2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113

127 131 137 139 149 151 157 163 167 173
179 161 191 193 197 199 211 223 227 229

FIGURE 1.4: The first 50 prime numbers.

There is a traditional adjective for numbers which are not prime:

DEFINITION 1.12 (Composite numbers.) An integer n is said to
be composite if n > 1, but n is not prime.

Thus a number n > 1 is composite if it is not irreducible, i.e., if it has a
nontrivial factorization n = a · b with integers 1 < a < n and 1 < b < n.

1.8 The Fundamental Theorem of Arithmetic

In Figure 1.3, the number 72 is displayed as the product 72 = 8·9 = 23 ·32 =
2 · 2 · 2 · 3 · 3 of prime numbers. The latter product may be written with the
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factors in various orders, such as 72 = 2 ·3 ·2 ·2 ·3 or 72 = 2 ·3 ·2 ·3 ·2. But to
within such reorderings of the prime factors, the factorization is unique. The
Fundamental Theorem of Arithmetic states that every integer greater than
1 has a factorization as a product of primes, unique up to reordering of the
factors.

The existence part of the theorem is stated and proved as follows.

THEOREM 1.13 (Existence of factorizations.)
Each integer n > 1 may be expressed as a product of prime numbers.

PROOF Let B be the set of integers n > 1 which cannot be expressed
as a product of primes. If the theorem is false, then B is nonempty. In that
case, the Well-Ordering Principle says that B has a least element b. Since
the integer b lies in the set B, it is not itself prime (or irreducible), so it has
divisors g1 and g2 with

b = g1g2 (1.32)

and 1 < g1, g2 < b. Since the divisors g1 and g2 are strictly less than b,
the least element of B, they are expressible as products of primes. But then
(1.32) expresses the integer b as a product of primes, contradicting its status
as a member of B. Since falsehood of the theorem leads to an inevitable
contradiction, we conclude that the theorem is true.

Implicit in the proof of Theorem 1.13 is a method, however slow, to produce
the factorization of a given integer larger than 1 as a product of primes. For
example, consider b = 500, which factorizes as b = g1g2 with g1 = 50 and
g2 = 10. Then g1 = 5 · 10 = 5 · 2 · 5 and g2 = 2 · 5, so 500 = 5 · 2 · 5 · 2 · 5. If
b is less friendly, e.g., b = 281957, then one has to try dividing b in turn by
successive primes p = 2, 3, 5, 7, 11, . . . up to

√
b (compare Exercise 36).

We now state the uniqueness half of the fundamental theorem.

THEOREM 1.14 (Uniqueness of factorization.)
Suppose that p1, p2, . . . , pr and q1, q2 . . . , qs are primes. Then if

p1 · p2 · . . . · pr = q1 · q2 · . . . · qs , (1.33)

r = s, and each pi on the left hand side of (1.33) appears as a qj on the right
hand side of (1.33).

To prove Theorem 1.14, we will use a subsidiary result, a “lemma.”

LEMMA 1.15
Suppose that p1, q1, q2, . . . , qs are primes. Then if

p1 | q1 · q2 · . . . · qs , (1.34)



16 Introduction to Abstract Algebra

there is some 1 ≤ j ≤ s such that p1 = qj.

PROOF Suppose that the lemma is false. Let S be the set of natural
numbers s for which there are primes p1, q1, q2, . . . , qs with (1.34) holding,
but where p1 does not appear as any qj with 1 ≤ j ≤ s. Since the lemma
is false, the set S is nonempty, and thus has a least element s. Consider
p1, q1, q2, . . . , qs as in (1.34) for this integer s. Now p1 does not divide the
product q1 ·q2 · . . . ·qs−1, for then the minimality of s in S would mean that p1

shows up among q1, q2, . . . , qs−1. Since p1 is prime, and (1.34) holds, it follows
that p1 | qs. Since 1 < p1 and qs is irreducible, p1 = qs, in contradiction to
the assumption. Thus the lemma is true after all.

To complete the proof of Theorem 1.14, suppose (1.33) holds. Then

p1 | q1 · q2 · . . . · qs .

By Lemma 1.15, there is some 1 ≤ j ≤ s such that p1 = qj . Then

p2 · p3 · . . . · pr = q1 · . . . · qj−1 · qj+1 · . . . · qs .

By Lemma 1.15, p2 cancels with some qk from the right-hand side. Continuing
in this fashion, the pi on the left of (1.33) are paired off with the qj on the
right. In particular, the number r of factors on the left-hand side of (1.33)
agrees with the number s of factors on the right.

The Fundamental Theorem of Arithmetic makes a connection between the
two order relations ≤ and | on the set N of natural numbers. Specifically, for
distinct primes p1, p2, . . . , pr and natural numbers e1, f1, e2, f2,. . . , er, fr,

pe1
1 · pe2

2 · . . . · per
r | pf1

1 · pf2
2 · . . . · pfr

r if and only if e1 ≤ f1, . . . , er ≤ fr.

We conclude with an application of this idea.

DEFINITION 1.16 (Least common multiple.) Let a and b be
nonzero integers. The least common multiple lcm(a, b) of a and b is the
minimum element of the set S = {m | m > 0 , a | m, b | m} of positive
common multiples of a and b.

Write max{e, f} for the maximum of integers e and f . The Fundamental
Theorem of Arithmetic yields the following result. Its proof is assigned as
Exercise 39.

PROPOSITION 1.17 (Computing the least common multiple.)
Let a = pe1

1 · pe2
2 · . . . · per

r and b = pf1
1 · pf2

2 · . . . · pfr
r for distinct primes p1, p2,

. . . , pr, and natural numbers e1, f1, e2, f2,. . . , er, fr. Then

lcm(a, b) = p
max{e1,f1}
1 · pmax{e2,f2}

2 · . . . · pmax{er,fr}
r .



NUMBERS 17

1.9 Exercises

1. Suppose x, y, and z are real numbers. If x ≤ y ≤ z ≤ x, give a formal
proof that y = z by use of transitivity and antisymmetry.

2. Suppose that x0, x1, . . . , xn are real numbers, with x0 ≤ x1 ≤ · · · ≤ xn.
If xn ≤ x0, show that x0 = xr for 1 ≤ r ≤ n.

3. Why is (1.7) true?

4. Why is (1.5) true?

5. Find the least element inf S of the set S from Example 1.2.

6. Find the smallest integer n for which 2n < n!.

7. Let S be a nonempty subset of N. Let s be an element of S. The
intersection {0, 1, . . . , s − 1} ∩ S denotes the set of elements of S less
than s.

(a) If the intersection {0, 1, . . . , s−1}∩S is empty, show that inf S = s.

(b) If the intersection {0, 1, . . . , s − 1} ∩ S is nonempty, show that
inf S = min({0, 1, . . . , s− 1} ∩ S).

8. Prove

13 + 23 + 33 + . . . + n3 =
(

n(n + 1)
2

)2

for natural numbers n.

9. (a) Prove

1 + 2 + 3 + . . . + n =
n(n + 1)

2
(1.35)

for natural numbers n by induction.

(b) Can you prove (1.35) directly, without using induction?

10. Prove n < 2n for natural numbers n.

11. Let m be a nonzero integer.

(a) Show that n | m implies |n| ≤ |m|. (In words: each divisor of a
nonzero integer is no greater than that integer in absolute value.)

(b) If you are uncomfortable with absolute values, show instead that
n | m implies n2 ≤ m2.

(c) Conclude that the set of divisors of m is finite.

12. Show that every integer divides zero.
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13. There are 36 inches in a yard, and 100 centimeters in a meter.

(a) In how many ways can a piece of wood a yard long be divided into
equal pieces whose length is an integral number of inches?

(b) In how many ways can a piece of wood a meter long be divided into
equal pieces whose length is an integral number of centimeters?

14. Prove Proposition 1.5. [Hint: To prove the antisymmetry (A) that does
not hold for divisibility on Z, consider the solutions x of the equation
x2 = 1 in Z and N.]

15. Describe the divisibility relation | on the set R of real numbers.

16. Consider running the Division Algorithm on the inputs a = 1 and d = 0.

(a) For the set S of (1.16), what is inf S?

(b) Show that a unique remainder r is obtained, but that the quotient
q is not unique.

(c) Is Proposition 1.6 contradicted?

17. Let d be a positive odd number. Show that for each integer a, there are
unique integers q and r such that a = dq + r with |r| < d/2. In other
words, each integer a can be approximated by a multiple of d to within
an error of less than d/2.

18. Consider the 16× 11 rectangular array of 176 pixels in a display.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
1
2
3
4
5
6
7
8
9
10

¥

The pixels are located by their coordinates in the array, so that the
bottom left pixel has coordinates (0, 0), and the top right pixel has
coordinates (15, 10). The pixels are addressed by the numbers from 0
to 175. The address of the pixel with coordinates (q, r) is

a = 11q + r .
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(a) What is the address of the pixel with the black square?

(b) What are the coordinates of the pixel with address 106?

19. Let d > 1 be a fixed integer, known as the base. To represent a given
positive integer n as a sequence n = nknk−1 . . . n2n1 of digits in base d,
with 0 ≤ ni < d for 1 ≤ i ≤ k, consider the following algorithm:

(a) Initialize with q0 = n and i = 1 ;

(b) At Step (i), obtain qi−1 = qid + ni with the Division Algorithm;

(c) Stop at Step (k) when qk = 0 ;
(d) Otherwise, replace i by i + 1 and return to (b).

Show that n = nkdk−1 + nk−1d
k−2 + . . . + n2d + n1.

20. Express the base 10 number 3817 as a hexadecimal (base 16) number.
Use A = 10, B = 11, C = 12, D = 13, E = 14, F = 15 for the digits
above 9.

21. In a certain state, persons under age 21 are not allowed into bars that
serve intoxicating beverages. If 21 were read as an octal number (to base
8), what would be the minimum age (to the usual base 10) of persons
allowed into bars?

22. In Figure 1.3:

(a) Identify the set of positive divisors of 18.

(b) Identify the set of positive divisors of 24.
(c) Identify the set S of common divisors of 18 and 24.

(d) Identify gcd(18, 24) as the largest element of the set S.

23. Find all pairs of relatively prime positive integers less than 10.

24. Show that 1 is the only positive integer that is relatively prime to every
positive integer.

25. In a gearbox, gear wheel A meshes with gear wheel B. The two rotate
together many times. Gear wheel A has a teeth, and gear wheel B has b
teeth. Show that each tooth of A meshes with each tooth of B at some
time if and only if a and b are relatively prime.

26. Prove the equalities (1.19), (1.20), and (1.21).

27. Prove Proposition 1.8.

28. Without appealing to the discussion of the Euclidean Algorithm, give
a direct proof of Proposition 1.9. [Hint: Applying the Well-Ordering
Principle, show that gcd(a, b) is the smallest member of the set S of
positive, integral linear combinations of a and b.]
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29. Let c be a positive common divisor of two nonzero integers a and b.

(a) Show that c divides gcd(a, b).

(b) Show that gcd(a, b)/c = gcd(a/c, b/c).

30. For nonzero integers a, b, and c, with c > 0, show that gcd(ac, bc) =
gcd(a, b) · c .

31. Let a and b be distinct nonzero integers. Show that the greatest common
divisor gcd(a, b) can be expressed in infinitely many distinct ways as an
integral linear combination gcd(a, b) = la + mb of a and b.

32. Use the Euclidean Algorithm to determine gcd(109, 60), and to express
it as an integral linear combination of 109 and 60.

33. Show that 2n + 1 and 3n + 1 are coprime for all natural numbers n.

34. Show that the Euclidean Algorithm will make at most b calls to the
Division Algorithm when it computes gcd(a, b) with a > b > 0.

35. (a) In how many ways can 72 be expressed as an ordered product of
three twos and two threes?

(b) Interpret each such expression 72 = p1p2p3p4p5 (with pi = 2 or 3)
as a walk from 1 to 72 along the path

1 → p1 → p1p2 → p1p2p3 → p1p2p3p4 → p1p2p3p4p5 = 72

in Figure 1.3.

(c) Conversely, show that each path from 1 to 72, following the arrows
at each step, determines an ordered factorization.

36. (a) Show that a composite number b has a prime divisor p with p ≤
√

b.

(b) Conclude that an integer n is prime if it is not divisible by any
prime less than

√
n.

37. Factorize b = 281957 as a product of primes.

38. Can you prove that n2 − n + 41 is prime for each natural number n?

39. Prove Proposition 1.17.

40. For positive integers a and b, show that an integer is a multiple of both
a and b if and only if it is a multiple of lcm(a, b).

41. Use the Fundamental Theorem of Arithmetic to obtain a formula for
gcd(a, d), similar to the formula for lcm(a, b) given in Proposition 1.17.

42. For nonzero integers a, b, and c, show that gcd(a, bc) = 1 if and only if
both gcd(a, b) = 1 and gcd(a, c) = 1.
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43. For positive integers a and b, prove a · b = gcd(a, b) · lcm(a, b) . [Hint:
For natural numbers e and f , prove e + f = min{e, f}+ max{e, f}.]

44. (a) Give an example of prime numbers p1, p2 and natural numbers e1,
f1, e2, f2 such that

lcm
(
pe1
1 pe2

2 , pf1
1 pf2

2

) 6= p
max{e1,f1}
1 · pmax{e2,f2}

2 .

(b) Why does this not contradict Proposition 1.17?

45. (a) Let p1 = 2, p2 = 3, p3 = 5, . . . , pr be the first r primes. Show that

n = p1 · p2 · . . . · pr + 1

is not divisible by any of p1, p2, . . . , pr.

(b) Applying Theorem 1.13 to n, deduce that there is a prime number
ps with pr < ps ≤ n.

(c) Conclude that there is an infinite number of primes.

46. Let n be a positive integer. A positive integer d is said to be a unitary
divisor of n if d divides n, and gcd(d, n/d) = 1. In this case, n is said
to be a unitary multiple of d.

(a) Determine the unitary divisors of 72 and 1200.

(b) Determine the least common unitary multiple of 18 and 45.

(c) Show that there is no least common unitary multiple of 3 and 9.

47. Consider a world in which the only positive numbers are the numbers

1, 5, 9, 13, 17, 21, 25, 29, . . . (1.36)

of the form 4r + 1 for r in N. Suppose that the numbers are only
multiplied, not added.

(a) Show that the product of two numbers from the list (1.36) also
appears in the list.

(b) Show that the numbers below 25 in the list (1.36) are irreducible
within this alternative world.

(c) Show that 9 divides 21 · 21, but 9 does not divide 21.

(d) Conclude that in this world, the property of being prime is distinct
from the property of being irreducible.
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1.10 Study projects

1. For a sport competition of your choice (say one season of a particular
league), determine whether the transitivity rule (1.6) and antisymmetry
rule (1.7) apply.

2. Consider the problem of finding the minimum minS of a finite set S of
natural numbers with n elements. Design a procedure to do this with
just n−1 comparisons between pairs of elements from S. As inspiration,
look at the brackets for a single-elimination sport competition in a league
with n members. (Compare Figure 1.5 for the case n = 6.)

bye

Forfar

bye

Easton

Dunbar

Caspar

Bangor

Avalon

Forfar

Easton

Dunbar

Avalon

Easton

Dunbar

Easton

FIGURE 1.5: Brackets for a competition.

3. The number 946 is a multiple of 11. Also, the difference between the
respective sums 9 + 6 and 4 of the odd-placed and even-placed digits of
946 is (a multiple of) 11. Is this just a coincidence, or can you extend
the observation to derive a quick way of recognizing multiples of 11?
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4. Discuss why Proposition 1.6 is needed. Why is it not enough to claim
that your computer or calculator can produce a unique quotient q and
remainder r if you give it a dividend a and (positive) divisor d? [Hint:
Can your computer accept a very large integer?]

5. Speed of the Euclidean Algorithm. Exercise 34 gives a crude bound
for the number of steps required by the Euclidean Algorithm. Can you
improve on this bound? Or for any positive integer k, can you always
find integers a > b > k for which the Euclidean Algorithm requires
approximately b steps?

6. Greatest common divisors. Consider the following method to find
the greatest common divisor of positive integers a and b:

(a) If a and b are even, remember gcd(a, b) = 2 · gcd(a/2, b/2) and
compute gcd(a/2, b/2) instead. (Compare Exercise 29.)

(b) If say a is even and b is odd, remember gcd(a, b) = gcd(a/2, b) and
compute gcd(a/2, b) instead.

(c) If a and b are odd, say a > b, remember gcd(a, b) = gcd(a − b, b)
and compute gcd(a− b, b) instead.

Use this method to compute greatest common divisors of pairs of large
integers. How does this method compare with the Euclidean Algorithm?
Can you adapt this new method to express gcd(a, b) as a linear combi-
nation of a and b?

1.11 Notes

Section 1.6

Euclid (Eυκλειδης) was a Greek mathematician living in the third century
B.C.

Section 1.7

When discussing integers, it has been traditional to define a number p to
be “prime” if it is irreducible. The proof of primality as we have defined it
— Proposition 1.11(b) — is then known as Euclid’s Lemma. Historically,
the distinct terminology for the internal and external properties emerged in
the 19th century, as mathematicians started to consider other systems of
factorization (for example the system of Exercise 47). In these cases, the two
properties may no longer coincide.
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Chapter 2

FUNCTIONS

Algebra, just like calculus, works with many different kinds of functions. In
this chapter, we will learn how to specify functions, and how to compose them.
We will also see how functions form mathematical structures: semigroups,
monoids, and groups.

2.1 Specifying functions

Let X and Y be sets. Then a map or function f : X → Y or X
f−→ Y is a

rule that assigns a unique element f(x) of Y to each element x of X. In this
context, the elements x of X are called the arguments of the function f , while
the elements f(x) of Y are called the values of the function. As examples,
consider the squaring function

sq : Z→ N (2.1)

defined by sq(n) = n2 for each integer n, or the absolute value function

abs : Z→ N (2.2)

defined by abs(n) = |n| for each integer n. In a function f : X → Y , the
set X is called the domain, while the set Y is called the codomain. Thus the
domain of (2.1) is Z, while the codomain of (2.1) is N. Note that (2.1) is
considered as different from the function

sq : Z→ Z (2.3)

with sq(n) = n2, since the two functions have different codomains. In general,
two functions f : X → Y and g : Z → T are equal if and only if all three of
the following conditions are satisfied:

• The domain X of f equals the domain Z of g ;

• The codomain Y of f equals the codomain T of g ;

• The function values f(x) and g(x) agree on each argument x in X.

25
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The reason for including the domain and codomain in the specification of a
function will become apparent in Section 2.5.

A function f must be able to assign a function value f(x) to each argument
x in its domain. For instance, we cannot have a function

inv : R→ R

with inv(x) = x−1, since this rule does not work for the element 0 of the
domain R. On the other hand, elements y of the codomain of a function
f : X → Y are not required to show up as actual function values f(x). While
each natural number does occur as the absolute value of some integer, there
are many natural numbers (such as 3) which are not the square of any integer.
The only demand placed on the codomain is that it be big enough to contain
all the function values that are generated. For example, we cannot set up a
function

sqrt : N→ N

with sqrt(n) =
√

n for natural numbers n, since the function value
√

3 does
not lie in N. But setting

sqrt : N→ R

would be fine, since square roots of natural numbers are always real numbers.
In summary, the domain should always be small enough to guarantee

that the function rule will work on each element of the domain. On the other
hand, the codomain should always be large enough to contain all the
function values that occur. In a function f : X → Y , the set

f(X) = {f(x) | x ∈ X} (2.4)

of function values of domain elements is called the image of the function. For
example, the image of the squaring function (2.1) is the set

{0, 1, 4, 9, 16, 25, 36, . . . }
of perfect squares.

It is sometimes helpful to be able to specify a function without naming it
explicitly. To this end, we will denote the action of a function at the element
level using barred arrows, e.g., sq : n 7→ n2. Thus the squaring function (2.1)
might have been specified as

Z→ N;n 7→ n2

without having to receive the (rather artificial) name sq. The barred arrow
notation is especially helpful when we examine functions whose arguments or
values are themselves sets (as in Section 3.2, for example). Suppose that A
and B are sets. Then f : A → B will denote a function with domain A and
codomain B, while f : A 7→ B means that a certain function f takes the
argument A to the value B.
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Warning: In calculus, the notation “f(x)” is sometimes used to denote a
function, for example when we speak of “the function sin(x).” In algebra, the
notation “f(x)” is reserved for the value of a function f at an argument x.
Do not confuse functions with elements of their domains or codomains.

2.2 Composite functions

Consider two functions f : X → Y and g : Y → Z, where the codomain Y
of f is also the domain of g. Then there is a composite function

g ◦ f : X → Z; x 7→ g(f(x))

whose domain is the domain of f and whose codomain is the codomain of g.
For example, the squaring function sq : Z → Z of (2.3) may be composed
with the absolute value function abs : Z→ N of (2.2) to yield the function

abs ◦ sq : Z→ N; n 7→ |n2| .
In fact, since |n2| = n2 for any natural number n, this composite function
abs ◦ sq is the same as the original squaring function (2.1).

Composition of functions f : X → Y and g : Y → Z may be illustrated by
an arrow picture, strongly reminiscent of the picture of transitivity on page 2:

¡
¡¡µ

X

f

g ◦ f

Y

@
@@R

g

Z-

If you find yourself getting confused by a profusion of functions, it can be
helpful to draw such pictures.

Suppose that there are functions f : X → Y , g : Y → Z, and h : Z → T .
These functions may be composed in two different ways:

h ◦ (g ◦ f) : X → T ; x 7→ h(g ◦ f(x))

and
(h ◦ g) ◦ f : X → T ; x 7→ (h ◦ g)(f(x)) .

However,
h(g ◦ f(x)) = h(g(f(x))) = (h ◦ g)(f(x))

for all x in X, so in fact we have the associative law

h ◦ (g ◦ f) = (h ◦ g) ◦ f (2.5)

for X
f−→ Y

g−→ Z
h−→ T .
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2.3 Linear functions

Linear functions form one of the most important classes of functions. For
positive integers m and n, consider the set

Rn
m =

{


a11 . . . a1n

...
...

am1 . . . amn




∣∣∣∣∣ aij real

}

of m × n real matrices. In particular, R1
2 is the set of 2-dimensional real

column vectors

x =
[
x1

x2

]

with x1, x2 in R. Each 2× 2 real matrix

A =
[
a11 a12

a21 a22

]

gives a linear function

LA : R1
2 → R1

2;
[
x1

x2

]
7→

[
a11x1 + a12x2

a21x1 + a22x2

]
(2.6)

or
LA(x) = Ax

using matrix multiplication. Note that

LA

[
1
0

]
=

[
a11

a21

]
and LA

[
0
1

]
=

[
a12

a22

]
,

so the linear function LA determines the matrix A.
Given a second matrix

B =
[
b11 b12

b21 b22

]

with a corresponding linear function LB : x 7→ Bx, the matrix product BA
is defined by

[
b11 b12

b21 b22

] [
a11 a12

a21 a22

]
=

[
b11a11 + b12a21 b11a12 + b12a22

b21a11 + b22a21 b21a12 + b22a22

]
. (2.7)

This apparently complicated formula is designed to make the equation

LBA(x) = LB ◦ LA(x) (2.8)

true for all x in R1
2 (Exercise 3): Matrix multiplication tracks the composition

of the corresponding linear functions. In particular, the associativity of matrix
multiplication is a direct consequence of the associativity (2.5) of function
composition.
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2.4 Semigroups of functions

Let X be a set. A map or function f : X → X from X to itself is often
described as a self-map of the set X. In this context, the set X is sometimes
called the base set for the function f : X → X.

DEFINITION 2.1 (Semigroup of functions.) A set S of functions
f : X → X with domain X and codomain X is said to be a semigroup of
functions on the base set X if

f and g in S imply g ◦ f in S . (2.9)

We also say that the set S is closed under composition.

If f is an element of a semigroup S of functions, the powers fn for positive
integers n are defined recursively by f1 = f and fn+1 = fn ◦ f .

Here are some important examples of semigroups of functions.

Example 2.2 (Self-maps.)
For a base set X, define XX to be the set of all functions from X to X. Then
XX forms a semigroup of functions on X. (For a justification of the notation,
see Exercise 5.)

Example 2.3 (Constant functions.)
Let X be a set, and let Y be a subset of X. For each element y of Y , define
a constant function

cy : X → X;x 7→ y .

Note that for each element x of X, and for y, z in the subset Y , we have

cz ◦ cy(x) = cz(cy(x)) = cz(y) = z = cz(x) ,

so that cz ◦ cy = cz. Thus the set

CY = {cy | y in Y } (2.10)

forms a semigroup of functions on X.

Example 2.4 (Nondecreasing functions.)
Recall that in calculus, a function f : R→ R is nondecreasing if x ≤ y implies
f(x) ≤ f(y). Then the set of nondecreasing functions forms a semigroup of
functions on R (Exercise 6).
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Example 2.5 (Real shifts.)
For each real number r, define the shift by r to be the map

σr : R→ R; x 7→ r + x .

Note that for real numbers r, s, and x, we have

σr ◦ σs(x) = r + (s + x) = (r + s) + x = σr+s(x) ,

so σr ◦ σs = σr+s. Thus the set Σ of shifts forms a semigroup of functions on
R. For a positive integer n and real number r, the equation

σn
r = σnr (2.11)

holds (Exercise 9).

Example 2.6 (Computable functions.)
Define a function f : N→ N to be computable if there is a computer program
producing f(n) as output whenever a natural number n is given as the input.
Then if f and g are computable, so is their composite g ◦ f . In fact, given
the input n, a program for g ◦ f could just take the output f(n) of a program
for f , and feed this number f(n) as input to the program for g, obtaining
the required output g ◦ f(n). Thus the set of computable functions forms a
semigroup of functions on N.

DEFINITION 2.7 (Identity function.) For any set X, the identity
function idX is defined by idX : X → X; x 7→ x .

Note that for sets X, Y and f : X → Y , we have

idY ◦ f = f = f ◦ idX . (2.12)

DEFINITION 2.8 (Monoid of functions.) A set S of self-maps on a
base set X is said to be a monoid of functions on X if it forms a semigroup,
and if the identity function idX is an element of S.

Clearly XX is a monoid on X. For a slightly less trivial example, note that
the identity function idN on the set N of natural numbers is computable. Given
a natural number n as input, consider the “lazy” program which immediately
returns n as output. Thus the set of computable functions in Example 2.6 is
a monoid of functions on N.

For an element f of a monoid of functions on a set X, the power notation
may be extended by setting f0 = idX .



FUNCTIONS 31

Example 2.9 (Linear functions.)
By (2.8), the set L(2,R) of linear functions from R1

2 to itself forms a semigroup
of functions on R1

2. Now for the 2× 2 identity matrix

I2 =
[
1 0
0 1

]
, (2.13)

the linear function LI2 is the identity function idR12 , so L(2,R) forms a monoid

of functions on R1
2.

2.5 Injectivity and surjectivity

A function f : X → Y is required to assign a unique function value f(x) in
the codomain Y to each argument x from the domain X. On the other hand,
it may happen that different arguments are assigned the same function value.
For instance, with the squaring function sq : Z→ N of (2.1), we have

sq(−5) = (−5)2 = 25 = 52 = sq(5) .

DEFINITION 2.10 (Injective function.) A function f : X → Y is
said to be injective, or an injection, or “one-to-one,” if

f(x) = f(x′) implies x = x′ (2.14)

for all elements x and x′ of the domain X.

Expressing the injectivity condition (2.14) another way, the equation

f(x) = y (2.15)

is required to have a unique solution x in X for each element y of the image
(2.4) of f . By default, any function with empty domain is injective. The
restricted squaring function

sq : N→ N;n 7→ n2 (2.16)

is injective, while the original squaring function sq : Z→ N is not. This shows
why the domain is an integral part of the specification of a function.

PROPOSITION 2.11 (Retracts of injective functions.)
Let f : X → Y be injective, with nonempty domain. Then there is a function

r : Y → X (2.17)
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such that
r ◦ f = idX . (2.18)

PROOF Pick an element x0 of X. For a codomain element y that does
not lie in the image f(X), define r(y) = x0. Now consider an element y of
the image f(X). By the definition (2.4) of the image, the equation

f(x) = y

has a solution. Since f is injective, the solution is unique. Define r(y) to
be this unique solution element xy. We obtain a function r : Y → X. Now
r ◦ f : X → X. Then for each element x of X, we have

r ◦ f(x) = r
(
f(x)

)
= xf(x) = x = idX(x) ,

verifying (2.18).

DEFINITION 2.12 (Retracts.) A function r : Y → X is called a
retract of a function f : X → Y if r ◦ f = idX .

PROPOSITION 2.13 (Functions with retracts are injective.)
If a function f : X → Y has a retract, then it is injective.

PROOF Let r : Y → X be a retract for f . Then

f(x) = f(x′) implies x = r ◦ f(x) = r ◦ f(x′) = x′

for x, x′ in X.

Proposition 2.11 shows that each injection with nonempty domain has a
retract. Note that an injection f might have many retracts, because of the
arbitrary choice of the element x0 in the proof of the existence of the retract
(Exercise 22). Also, note that the identity function id∅ on the empty set is
its own retract.

DEFINITION 2.14 (Surjective function.) A function f : X → Y
is said to be surjective, or a surjection, or to map onto its codomain, if the
codomain and image coincide: Y = f(X) .

Equivalently, a solution x to the equation f(x) = y of (2.15) exists for each
element y of the codomain. In yet another formulation, the inverse image

f−1{y} = {x in X | f(x) = y}
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is required to be nonempty for each element y of Y . Note that the only
surjective function with an empty domain is the identity function id∅ on the
empty set. The absolute value function abs : Z → N of (2.2) is surjective,
while the absolute value function

abs : Z→ Z; n 7→ |n| (2.19)

is not, since the equation
|n| = −5

has no solution n. This shows why the codomain is an integral part of the
specification of a function.

PROPOSITION 2.15 (Sections of surjective functions.)
Let f : X → Y be surjective. Then there is a function

s : Y → X (2.20)

such that
f ◦ s = idY . (2.21)

PROOF If X is empty, then so is Y , and f is just the identity function id∅.
In this case, s = id∅ makes (2.21) work. Now suppose that X is nonempty.
For an element y of Y , there is an element x of X such that f(x) = y. Choose
the function value s(y) as one such element xy. Then a function s : Y → X
is defined. For each element y of Y , we have

f ◦ s(y) = f
(
s(y)

)
= f(xy) = y = idY (y) ,

verifying (2.21).

DEFINITION 2.16 (Sections.) A function s : Y → X is called a
section of a function f : X → Y if f ◦ s = idY .

PROPOSITION 2.17 (Functions with sections are surjective.)
If a function f : X → Y has a section, then it is surjective.

PROOF Let s : Y → X be a section for f . Then

f
(
s(y)

)
= f ◦ s(y) = idY (y) = y

for each element y of Y .

Proposition 2.15 shows that each surjection has a section. Note that a
surjection f might have many sections, because of the arbitrary choice of the
elements xy in the proof of the existence of the section (Exercise 23).
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2.6 Isomorphisms

DEFINITION 2.18 (Bijective function, isomorphism of sets.) A
function f : X → Y is said to be bijective, or an isomorphism (of sets), or a
bijection, if it is both injective and surjective.

PROPOSITION 2.19 (Inverses of isomorphisms.)
Let f : X → Y be a bijection. Then there is a function

g : Y → X (2.22)

such that
g ◦ f = idX and f ◦ g = idY . (2.23)

PROOF By Propositions 2.11 and 2.15, we have

r ◦ f = idX and f ◦ s = idY . (2.24)

By the associativity of function composition, we have

r = r ◦ idY = r ◦ f ◦ s = idX ◦ s = s .

Define g = r = s. Then (2.23) follows from (2.24).

DEFINITION 2.20 (Inverse, invertible function.) For a function
f : X → Y , a function g : Y → X satisfying g ◦ f = idX and f ◦ g = idY

is called an inverse of f . A function is described as invertible if it has an
inverse.

Example 2.21 (Natural logarithms and the exponential function.)
Let (0,∞) denote the set (open interval) of positive real numbers. Then the
exponential function exp : R→ (0,∞); x 7→ ex is invertible, with the natural
logarithm function log : (0,∞) → R as an inverse. The equations (2.23) are
the familiar relationships

log ex = x

for real numbers x and
elog y = y

for positive real numbers y.

Proposition 2.19 shows that bijections are invertible. Conversely, an inverse
g of an invertible function f is both a retraction and a section for f . Thus an
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invertible function f is both injective and surjective. In other words, invertible
functions are bijective.

Example 2.22 (Inverses of real shifts.)
For each real number r, the shift σr of Example 2.5 has the shift σ−r as an

inverse. Thus the shifts are bijective.

Recall that sections and retractions need not be unique. With inverses, the
situation is different.

PROPOSITION 2.23 (Uniqueness of inverses.)
The inverse of an invertible function is unique.

PROOF Let g : Y → X be an inverse of a function f : X → Y . If a
function h : Y → X satisfies

h ◦ f = idX or f ◦ h = idY ,

then
h = h ◦ idY = h ◦ f ◦ g = idX ◦ g = g

or
g = g ◦ idY = g ◦ f ◦ h = idX ◦ h = h

respectively. In particular, g : Y → X is uniquely specified by (2.23).

In view of Propositon 2.23, we can speak of the inverse f−1 of an invertible
function f . Note that

(f−1)−1 = f

for an invertible function f , so that inverses of invertible functions are again
invertible.

If there is an isomorphism f : X → Y from a set X to a set Y , we often
write

X ∼= Y (2.25)

and say that the sets X and Y are isomorphic. In this case Y ∼= X, by virtue
of the isomorphism f−1. We will often want to show that two sets X and Y
are isomorphic. The standard technique for this is to exhibit two mutually
inverse functions f : X → Y and g : Y → X.

Example 2.24
The set Z of integers is isomorphic with the subset N of natural numbers.

Consider the function f : N → Z defined by setting f(0) = 0 and f(2r) = r,
f(2r − 1) = −r for positive integers r. Consider the function g : Z → N
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defined by g(n) = 2n for n ≥ 0 and g(n) = 2|n| − 1 for n < 0. Then f and g
are mutually inverse.

The proof of the following proposition is left as Exercise 34.

PROPOSITION 2.25
Consider functions f : X → Y and g : Y → Z.

(a) If f and g are injective, then so is g ◦ f .

(b) If f and g are surjective, then so is g ◦ f .

(c) If f and g are bijective, then so is g◦f . Moreover, (g◦f)−1 = f−1◦g−1.

Example 2.26 (Counting.)
For each natural number n, consider the finite set

n = {0, 1, 2, . . . , n− 1} (2.26)

of natural numbers less than n. Note that the set n has n elements. In
particular, 0 is the empty set. Now if a finite set X has n elements, say
X = {x0, x1, . . . , xn−1}, then there is a bijection

k : n → X; i 7→ xi . (2.27)

Indeed, a set X has n elements if and only if there is a bijection k : n → X. We
may say that k counts the elements of X. The number of elements in a finite
set X is called the size or order of X. It is written as |X| . Proposition 2.25(c)
may be used to show that two finite sets X and Y are isomorphic if and only
if |X| = |Y | (Exercise 35).

2.7 Groups of permutations

DEFINITION 2.27 (Groups of permutations.) Let X be a set.

(a) A bijective function f : X → X is called a permutation of the set X.

(b) A set G of permutations on X is said to be a group of permutations of
X or a permutation group on the set X if it is a monoid of functions
satisfying the additional property

f in G implies f−1 in G . (2.28)

The property (2.28) is known as closure under inversion.
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Let X! be the set of all permutations of a given set X. According to
Proposition 2.25(c), X! forms a semigroup of functions on X. Since idX is
a permutation, X! forms a monoid of functions on X. Finally, the fact that
inverses of invertible functions are invertible means that X! forms a group of
permutations. This group X! is known as the symmetric group on X. (For a
justification of the notation, see Exercise 44.)

Example 2.28 (The group of real shifts.)
The monoid ΣR of shifts on R (compare Example 2.5 and Exercise 8) forms

a group of permutations of R, since (σr)−1 = σ−r as noted in Example 2.22.
On the other hand, consider the set

Σ+
R = {σr | r ≥ 0}

of shifts by nonnegative real numbers r. This set does form a monoid of
permutations on R. However, it does not form a permutation group on R,
since it does not satisfy the property (2.28) of closure under inversion.

Example 2.29 (The symmetric groups Sn.)
For each natural number n, write Sn for the symmetric group n! on the set

(2.26) of natural numbers less than n. The group Sn is called the symmetric
group on n symbols. For a set {a1, a2, . . . , ar} of distinct elements of n, the
cycle

(a1 a2 . . . ar)
denotes the bijection

n → n ; a1 7→ a2, a2 7→ a3, . . . , ar−1 7→ ar, ar 7→ a1

with x 7→ x for elements x of n not included in the set {a1, a2, . . . , ar}. It
is conventional to write idn as the cycle (0). Two cycles (a1 a2 . . . ar) and
(b1 b2 . . . bs) are said to be disjoint if the corresponding sets {a1, a2, . . . , ar}
and {b1, b2, . . . , as} are disjoint (have no common element). Each permutation
may be written as a product of mutually disjoint cycles. For example,

0 7→ 3, 1 7→ 1, 2 7→ 7, 3 7→ 6, 4 7→ 8, 6 7→ 0, 7 7→ 2, 8 7→ 4

in S9 may be written as the product (0 3 6) ◦ (2 7) ◦ (4 8) of disjoint cycles.
By following the effect of these functions, it is easy to express products of
permutations as products of disjoint cycles. For example,

(0 3 6) ◦ (2 7) ◦ (4 8) ◦ (0 4 7 2 6) ◦ (1 8) = (0 8 1 4 2) ◦ (3 6)

since (0 3 6) ◦ (2 7) ◦ (4 8) ◦ (0 4 7 2 6) ◦ (1 8)(0)

= (0 3 6) ◦ (2 7) ◦ (4 8) ◦ (0 4 7 2 6)(0)
= (0 3 6) ◦ (2 7) ◦ (4 8)(4) = (0 3 6) ◦ (2 7)(8) = 8

and so on.
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FIGURE 2.1: A regular n-gon.

Example 2.30 (The cyclic groups Cn.)
For each positive integer n, the cyclic group Cn consists of the n permutations

(
0 1 2 3 . . . (n− 2) (n− 1)

)
,

(
0 1 2 3 . . . (n− 2) (n− 1)

)2
,

(
0 1 2 3 . . . (n− 2) (n− 1)

)3
, . . .

. . . ,
(
0 (n− 1) (n− 2) . . . 3 2 1

)
,

and (0) from Sn. These permutations correspond to the respective counter-
clockwise rotations of a regular n-gon by the angles

2π

n
, 2

2π

n
, 3

2π

n
, . . . , (n− 1)

2π

n
, 0

radians (Figure 2.1).

Example 2.31 (The Klein 4-group.)
The Klein 4-group V4 is the set

{ (0), (0 1)(2 3), (0 2)(1 3), (0 3)(1 2) }
of permutations. It forms a group of permutations of the set n for each natural
number n ≥ 4 (Exercise 40).

The cycle notation is extended to denote permutations of arbitrary sets.
For example,

(A♥ 3♥ J♥ 7♥) ◦ (K♥ 4♥) ◦ (10♥ 9♥ 2♥)

might denote a shuffle of the suit ♥ of hearts from (1.3). For an application
of permutations to elementary cryptography, see Study Project 3 at the end
of the chapter.
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2.8 Exercises

1. Show that the empty set ∅ = { } cannot be the codomain of a function
f : X → ∅ with nonempty domain X.

2. Draw an arrow picture to illustrate all the functions

f, g, h, g ◦ f, h ◦ (g ◦ f), h ◦ g, (h ◦ g) ◦ f

involved in the associative law (2.5).

3. Verify that (2.8) holds for all 2-dimensional real column vectors x.

4. Let m, n, and p be positive integers. Show that for an m×n real matrix
A, there is a function Rp

n → Rp
m; X 7→ AX.

5. Let X be a finite set with n elements. Show that the semigroup XX

has nn elements.

6. Show that the set of nondecreasing functions forms a monoid of functions
on R.

7. A function f : R → R is said to be strictly increasing if x < y implies
f(x) < f(y). Show that the set of strictly increasing functions forms a
monoid of functions on R.

8. Show that the set Σ of shifts in Example 2.5 forms a monoid of functions
on R.

9. Verify the equation (2.11), and show that it also holds for n = 0. (Hint:
Consider using induction with n = 0 as the basis.)

10. For each natural number n, define the power map

pn : R→ R;x 7→ xn . (2.29)

Show that the set P of all power maps forms a monoid of functions on
the set R.

11. Let n be an integer such that nx = cn(x) for all integers x. Show that
n = 0.

12. Let Y be a subset of a set X. Under what conditions on X and Y does
the set (2.10) of constant functions form a monoid of functions on X?

13. A function f : R → R is said to be affine if there are real numbers m
and c such that

f : x 7→ m · x + c (2.30)
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Show that the set A of all affine functions forms a monoid of functions on
R. (In calculus, affine functions are often called “linear,” but in algebra
it is best to reserve this term for the case c = 0.)

14. A function f : R → R is said to be a polynomial function if there is a
natural number n and real numbers f0, f1, . . . , fn such that

f(x) = fnxn + . . . + f1x + f0

for x in R.

(a) Show that the set of all polynomial functions forms a monoid of
functions on R.

(b) Show that there is a function f : R→ R which is not a polynomial
function.

15. Show that the set C(R) of all continuous functions f : R → R forms a
monoid of functions on R.

16. Let r be a positive integer. Let Cr(R) denote the set of all functions
f : R→ R for which the r-th derivative fr(x) exists at each real number
x. Show that Cr(R) forms a monoid of functions on R.

17. Let X be an infinite set. A function f : X → X is said to be almost
identical if the set

{x ∈ X | x 6= f(x)}
of elements x of X, differing from their image f(x) under f , is finite.
Let F be the subset of XX consisting of the almost identical functions.
Show that F is a monoid of functions.

18. Show that the power map pn of (2.29) is injective if and only if n is odd.

19. Show that the power map pn of (2.29) is surjective if and only if n is
odd.

20. Show that sections are injective.

21. Show that retracts are surjective.

22. Show that the injection (2.16) has infinitely many retracts.

23. Show that the surjection (2.2) has infinitely many sections.

24. Consider the function

f : R→ R; x 7→ x(x− 1)(x + 1) .

(a) Show that f is not injective.
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(b) Using the Intermediate Value Theorem or otherwise, show that f
is surjective.

25. Consider the function

f : R→ R;x 7→ ex .

(a) Show that f is injective.

(b) Is the natural logarithm function a retraction for f?

(c) Show that f is not surjective.

26. Let f : X → X be a function with finite domain X. Show that the
following three conditions are equivalent:

(a) f is injective;

(b) f is surjective;

(c) f is bijective.

27. Consider the 2× 2 real matrix

A =
[
a b
c d

]
.

Show that the following three conditions are equivalent:

(a) The linear function LA is injective;

(b) ad− bc 6= 0;

(c) The linear function LA is surjective.

28. Let f : X → Y be a function from a finite set X with m elements to
a finite set Y with n elements. If m > n, show that f is not injective.
(This is known as the Pigeonhole Principle: If m pigeons occupy n holes,
and m > n, then at least two pigeons have to share.)

29. Show that the set R of real numbers is isomorphic to its proper subset
(0,∞) of positive real numbers. (Compare Example 2.21.)

30. Show that a finite set X cannot be isomorphic to a proper subset Y of
X. (Recall that a subset Y of a set X is proper if there is an element x
of X that does not lie in Y .)

31. Let f : X → Y ;x 7→ f(x) be a function.

(a) Show that there is a unique subset Y ′ of Y such that the minimal
corestriction

X → Y ′; x 7→ f(x) (2.31)

is a surjective function.
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(b) What is the minimal corestriction of the absolute value function
(2.19)?

32. Let f : X → Y ;x 7→ f(x) be a function.

(a) Show that there is a subset X ′ of X such that the function

X ′ → Y ; x 7→ f(x) (2.32)

is an injective function.

(b) Give an example to show that the subset X ′ need not be unique.

33. Let f : X → Y be a function with nonempty domain X. Show that
there is a function g : Y → X such that f = f ◦ g ◦ f .

34. Prove Proposition 2.25.

35. Let X and Y be finite sets. Show that X ∼= Y if and only if |X| = |Y |.
36. Let X be a set. Suppose that a nonempty semigroup G of permutations

of X satisfies the property (2.28) of closure under inversion.

(a) Show that idX lies in G.

(b) Conclude that G is a permutation group on X.

37. Express
(0 7 2 1) ◦ (3 4 5 6) ◦ (0 6 2 4) ◦ (3 1 5 7)

as a product of disjoint cycles.

38. Let β and
α = (x1 x2 . . . xr−1 xr)

be permutations of a finite set X. Show that

β ◦ α ◦ β−1 =
(

β(x1) β(x2) . . . β(xr−1) β(xr)
)
.

39. Let n be a positive integer. Show that Sn has n! elements: To specify
a permutation α of n, there are n choices for α(0), then n − 1 choices
for α(1) (avoiding α(0)), then n− 2 choices for α(2) (avoiding α(0) and
α(1)), and so on.

40. Show that V4 forms a group of permutations of each set n with n ≥ 4.

41. Show that for distinct elements a1, a2, . . . , ar−1, ar of the set n,

(a1 a2 . . . ar−1 ar) = (a2 a3 . . . ar a1) .
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42. Show that for distinct elements a1, a2, . . . , ar−1, ar of the set n,

(a1 a2 . . . ar−1 ar)−1 = (ar ar−1 . . . a2 a1) .

43. Show that

(a1 a2 . . . ar−1 ar) ◦ (b1 b2 . . . bs−1 bs)
= (b1 b2 . . . bs−1 bs) ◦ (a1 a2 . . . ar−1 ar)

for disjoint cycles (a1 a2 . . . ar) and (b1 b2 . . . bs).

44. Let X be a finite set with n elements. Show that the symmetric group
X! has n! elements.

45. Let Aff(R) be the set of all affine functions (2.30) with m 6= 0 (compare
Exercise 13). Show that Aff(R) forms a group of permutations of R.

46. Suppose that a group G of permutations of R contains the real shifts σa

and σb for real numbers a and b.

(a) Show that G contains σma for each positive integer m.

(b) Show that G contains σma for each integer m.

(c) Show that G contains σma+nb for each integral linear combination
ma + nb of a and b.

47. Suppose that a group G of permutations of R contains the real shifts σ2

and σ5. Show that G contains σn for each integer n.

2.9 Study projects

1. Not all functions are computable. Consider a program to compute
a certain function N → N. This program, as a list of instructions in a
certain programming language, can ultimately be written out as a long
but finite string of binary (base 2) digits:

100011001011100001111000100100100100101000000 . . . 011001001

Add a 1 to the left of each such string. (Why do we need to do this?)
The number that is represented to base 2 by the augmented string —
compare Exercise 19 of Chapter 1 — is called the Gödel number of the
program. List all possible such programs, for all computable functions
N → N, in increasing order of Gödel numbers. Suppose that the list is
P0, P1, P2, . . . . Suppose that for natural numbers m and n, the program
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Pm outputs the function value pmn when given input n. Now show that
the function

f : N→ N;x 7→ pxx + 1

is not computable, since for each natural number n, the function value
f(n) = pnn+1 differs from the function value pnn computed by Pn when
applied to the argument n. (The technique used here to construct f is
known as Cantor diagonalization.)

2. Symmetries of the regular tetrahedron. Consider the solid regular
tetrahedron:
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(a) Show that the rotations by 120◦ and 240◦ about an axis through
the vertex 0 and the midpoint of the triangular face 123 implement
the permutations (123) and (132) of the vertices.

(b) Show that the symmetries of the regular tetrahedron include all
the permutations

{
(123), (023), (013), (012),
(132), (032), (031), (021)

}
(2.33)

(c) Show that the full set of symmetries of the tetrahedron consists of
the union of the set (2.33) and the Klein 4-group V4.

(d) Determine a geometric or combinatorial rule that can decide when
a product of two elements of (2.33) will lie in V4.

(e) Look up the structure of a methane molecule CH4. How do its
symmetries relate to the symmetries of the regular tetrahedron?

3. Cryptography is the art of designing secret codes. An original text,
the cleartext , is transformed by a bijection c into an encoded text for
transmission across some channel that may be prone to eavesdropping.
The person for whom the message is intended then applies the inverse
bijection d = c−1 to decode the encoded text.
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Among the most elementary codes are those given by a permutation of
the alphabet, for example the “keyboard permutation”

c = (QWERTY UIOP ) ◦ (ASDFGHJKL) ◦ (ZXCV BNM) . (2.34)

(a) Apply the keyboard permutation (2.34) to encode the cleartext

SEND MORE MONEY .

(b) Suppose that the keyboard permutation was used to produce the
coded message

JPDY SHRD GTRRF .

What was the original cleartext?

4. Cryptanalysis is the eavesdropper’s art of breaking secret codes, of
reading encoded messages without explicitly being given details of the
bijection c used to encode them. Codes given by a permutation c such as
the keyboard permutation (2.34) are quite easy to break, using the fact
that various letters and letter combinations in the English language have
different frequencies. For example, the commonest letters in decreasing
order of frequency are

E, T, A, O, I, N, . . . , (2.35)

while combinations such as TH arise often, and Q is almost always
followed by U . Sometimes, knowledge of the context of the message can
be used. For example, if the message concerns Persian Gulf countries,
like Iraq or Qatar, then the letter following a Q might not be a U .

Suppose that an eavesdropper intercepts the message

CZY SY ABEE FY UKCDZY Q TO SKBR

TS OTL BR UKSCQ TO CZY Y KQC
(2.36)

encoded by a permutation c.

(a) Order the letters in the message (2.36) according to their relative
frequency.

(b) Compare this ordered list of letters with (2.35), and make an initial
partial guess at the decoding bijection d = c−1.

(c) Now, assuming that the message (2.36) consists of ordinary English
words, try to decode the message as completely as you can.

(d) If you cannot make sense of the message, try a different assignment
of the commonest letters. Also, be aware of the few possibilities for
two-letter words in the English language. Try using the fact that
TH is a common pair of letters.
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In order to remove the extra information given by the spaces between
words, a secret message such as (2.36) might be transmitted in a series
of 5-letter groups such as

CZY SY ABEEF Y UKCD ZY QTO SKBRT

SOTLB RUKSC QTOCZ Y Y KQC

instead.

2.10 Notes

Section 2.1

Various sources use various names in place of our domain/codomain/image
terminology. For instance, the terms “target” and “range” appear frequently,
the latter in all three possible roles:

• The range is the place where one goes to shoot bullets, so the “range”
is the domain, the place from which the arguments shoot out;

• The codomain is the set over which the function values “range”;

• The image is the exact set over which the function values “range.”

We hope that our terms are unambiguous.

Section 2.5

Strictly speaking, the proof of Proposition 2.15 uses the Axiom of Choice
to select the elements xy. In fact, the existence of a section to each surjective
function is one of the many equivalent formulations of the Axiom.

Section 2.7

For infinite sets X, some authors reserve the term “permutation” to denote
bijections f : X → X that are almost identical in the sense of Exercise 17.

C.F. Klein was a German mathematician who lived from 1849 to 1925.

Section 2.9

K. Gödel was an Austrian (Moravian) logician and mathematician, later
emigrating to the United States, who lived from 1906 to 1978. G. Cantor was
a German mathematician who lived from 1845 to 1918.



FUNCTIONS 47

2.11 Summary

In algebra, the notation for a function is more precise than the notation
commonly used in calculus. Associated with a function

f : X → Y ; x 7→ f(x)

are a number of key terms:

• The function assigns a unique value f(x) . . .

• . . . to each argument x;

• The domain X is the set from which the arguments are taken;

• The codomain Y is the set in which the function values are expected
to lie;

• The image is the set

f(X) = {f(x) | x in X}
of actual values which occur;

• For each element y of the codomain Y , the inverse image of y is the
set

f−1{y} = {x in X | f(x) = y} (2.37)

of arguments x that are assigned the function value y.

Note that the inverse image sets (2.37) exist for all functions f , regardless
of whether f is invertible or not. If f does happen to be invertible, then
f−1{y} = {f−1(y)}, so the notation is consistent in that case.

At a more basic level, it is important to distinguish between elements, sets,
and functions. An equation may say that two elements are equal:

idX(x) = x

or that two sets are equal:

sq(R) = {s ∈ R | s ≥ 0}
or that two functions are equal:

abs = sqrt ◦ sq . (2.38)

Do not write equations with a function on one side, and an element on the
other. For example, “ idX = x ” would be meaningless, since the left-hand
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side is a function, while the right-hand side is an element. In calculus, one
might see an equation of the form

|x| =
√

x2 ,

and this equation could be ambiguous. It could be expressing the equation
(2.38) between functions, or it could be an expression of the equality between
two real numbers, say if x had been specified as a certain real number. The
notation in algebra is carefully designed to avoid this kind of ambiguity, and
to make mathematical reasoning more transparent.

Added care is required when discussing a semigroup G of functions or group
G of permutations on a set X. In this case, we must distinguish between
the elements of the base set X, and the elements of the semigroup G. The
semigroup G is a set whose elements are functions, of the form f : X → X.



Chapter 3

EQUIVALENCE

When we do mathematics, we study the structures that underlie the various
phenomena encountered in the world. For this to work, mathematics has to be
able to filter out all the detail that is not relevant to the particular structure
being studied. Equivalence is the filter.

The most basic example is the concept of number. What does the number
3 stand for? A set X has 3 elements if and only if there is a set isomorphism

f : {1, 2, 3} → X (3.1)

counting off the elements of X as f(1), f(2), and f(3). The function f has to
be injective, so that no element of X gets counted twice. The function f has
to be surjective, to make sure that each element of X gets counted.

The only problem here is the circularity. To characterize the number 3, we
have used that number in the domain of the function (3.1). To escape the
circularity, we can decide to consider two sets as equivalent for the purposes
of counting whenever they are isomorphic. The number 3 then emerges as the
property which is common to each of the sets that are isomorphic to some
given 3-element set (for instance {1, 2, 3} or {∅, {∅}, {{∅}}}). The particular
details of the elements in the sets are not relevant to the problem of counting.
They are filtered out by the equivalence.

Equivalence relations play a key role in the analysis of general functions.
Each function determines an equivalence relation on its domain, identifying
two elements whenever they have the same function value. Conversely, it
transpires that every equivalence relation is of this type.

3.1 Kernel and equivalence relations

Consider the squaring function sq : Z → Z; n 7→ n2 of (2.3). For two
integers n and n′,

sq (n) = sq (n′) if and only if n′ = ±n .

In other words, the integers n and n′ are assigned the same function value
if and only if they both lie in the same equivalence class {r,−r}. These

49
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equivalence classes partition the domain set Z of integers, meaning that Z
decomposes as the union

Z = {0} ∪ {±1} ∪ {±2} ∪ {±3} ∪ . . . (3.2)

of mutually disjoint subsets, the equivalence classes.

DEFINITION 3.1 (Kernel relation of a function.) Consider a
function f : X → Y . A pair (x, x′) of elements of X is said to be in the
kernel relation ker f , and we write x ker f x′ or x (ker f) x′, if and only if
x and x′ are assigned the same function value by f . Formally,

x (ker f) x′ if and only if f(x) = f(x′) . (3.3)

Previously, we studied order relations such as ≤ on R or the divisibility
relation | on N. These order relations had the properties of being reflexive,
transitive, and antisymmetric. Now the kernel relation ker f of a function
f : X → Y is certainly reflexive:

x (ker f) x

for all x in X. It is also transitive:
(

x (ker f) x′ and x′ (ker f) x′′
)

implies x (ker f) x′′ ,

since f(x) = f(x′) and f(x′) = f(x′′) imply f(x) = f(x′′). The third property
of the kernel relation is called symmetry :

x (ker f) x′ implies x′ (ker f) x .

These properties of kernel relations are formalized in the important concept
of an equivalence relation. (Remember RST in alphabetical order!)

DEFINITION 3.2 (Equivalence.) Let R be a relation on a set X.

(R) The relation R is reflexive if x R x for each element x of X.

(S) The relation R is symmetric if for elements x and x′ of X, the relation
x R x′ implies x′ R x.

(T) The relation R is transitive if for elements x, x′, and x′′ of X, the
relations x R x′ and x′ R x′′ imply x R x′′.

Finally, the relation R is an equivalence relation on X if it satisfies all three
conditions (R), (S), and (T).

PROPOSITION 3.3 (Kernels are equivalence relations.)
Let f : X → Y be a function. Then the kernel relation ker f of f , specified

by (3.3), is an equivalence relation on the domain X of the function f .
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3.2 Equivalence classes

The kernel of the squaring function sq : Z → Z yielded the partition (3.2)
of Z. Each equivalence relation on a set yields a partition of the set.

DEFINITION 3.4 (Equivalence class.) If R is an equivalence relation
on a set X, define the equivalence class of x under R to be the set

[x]R = {x′ in X | x R x′} (3.4)

of all elements x′ of X that are related to x by R.

Note that each class [x]R is nonempty, since by reflexivity it at least contains
the element x itself. For the kernel relation ker f of a function f : X → Y ,
and for an element x of the domain X, the equivalence classes are given by
the inverse image sets

[x]ker f = f−1{f(x)} . (3.5)

Here is the key partitioning property of equivalence relations.

PROPOSITION 3.5 (Equivalence classes are disjoint or equal.)
Let R be an equivalence relation on a set X. Let x1 and x2 be elements of

X. Then the two equivalence classes [x1]R, [x2]R are either disjoint:

[x1]R ∩ [x2]R = ∅

or else equal: [x1]R = [x2]R. In the latter case, x1 R x2.

PROOF Suppose that [x1]R and [x2]R are not disjoint, so they have a
common element x′. Then x1 R x′ and x2 R x′ by the definition (3.4) of the
equivalence classes. By symmetry, x′ R x2. Then x1 R x′ and x′ R x2 imply
x1 R x2 by transitivity.

Now suppose that x′′ is an element of [x1]R, so that x1 R x′′. Then

x2 R x1 R x′′

implies x2 R x′′ by transitivity, so that x′′ is an element of [x2]R. Similarly,
each element of [x2]R is an element of [x1]R. It follows that the two classes
[x1]R and [x2]R are equal.

To conclude this section, we will show that each equivalence relation R on
a set X is the kernel relation of a suitable function with X as domain. Let
XR denote the set {

[x]R
∣∣ x in X

}
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of all equivalence classes under R. It is very important to note that XR is a
set of sets: The elements C of the set XR are themselves sets (the equivalence
classes). One of the main difficulties in understanding algebra arises if the
different levels of the hierarchy

elements — sets — sets of sets

are confused.

PROPOSITION 3.6 (Equivalence relations are kernels.)
Let R be an equivalence relation on a set X.

(a) There is a surjective function

nat R : X → XR; x 7→ [x]R .

(b) The kernel relation of the function nat R is R itself.

PROOF Part (a) is immediate. For part (b), note that two elements x1, x2

of X are related by the kernel relation of nat R if and only if [x1]R = [x2]R.
By Proposition 3.5, the latter condition holds if and only if x1 and x2 are
related by R.

By Proposition 2.15, the surjective function natR : X → XR has a section
rep : XR → X, with rep(C) as an element of C for each equivalence class
C in XR. The element rep(C) is called a representative for the equivalence
class C. Each equivalence class C may be written as the class

C = [rep(C)]R

of its chosen representative. Sometimes, to avoid having to consider the set
XR of sets, it is convenient to consider the image set rep(XR) instead, the
set of representative elements. Note that the sets XR and rep(XR) are iso-
morphic, by virtue of the mutually inverse functions rep : XR → rep(XR)
and rep(XR) → XR;x 7→ [x]R.

Example 3.7 (Choosing representatives.)
Let X be the set of citizens. Suppose that two citizens are related by the

equivalence relation R if and only if they belong to the same congressional
district (riding, parliamentary constituency, . . . ). Then as a representative
rep(C) for an equivalence class C, one may choose the congressional repre-
sentative (Member of Parliament, . . . ) for that district. Of course this choice
of representative is not unique, and may change after an election!
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3.3 Rational numbers
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FIGURE 3.1: Rational numbers.

Rational numbers provide a good example of the use of equivalence classes
in algebra. Consider the set

X = {(n,m) | n, m in Z, n 6= 0}
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of pairs of integers, the first integer of each pair being nonzero. The set X is
illustrated by the solid dots in Figure 3.1. Define a relation R on X by

(n1, m1) R (n2,m2) if and only if m1n2 = m2n1 . (3.6)

PROPOSITION 3.8
The relation R is an equivalence relation on X.

PROOF The conditions required by Definition 3.2 have to be verified. The
reflexivity (R) and symmetry (S) are immediate. To verify the transitivity,
suppose

(n1,m1) R (n2,m2) R (n3,m3) (3.7)

for elements (ni,mi) of X (with 1 ≤ i ≤ 3). Then

m1n2 = m2n1 and m2n3 = m3n2 .

Multiplying these two equations together yields

m1n2m2n3 = m3n2m2n1 .

Since n2 is a nonzero integer, it can be canceled to yield

m1m2n3 = m3m2n1 .

If m2 is nonzero, it can also be canceled to give the equation

m1n3 = m3n1 (3.8)

showing that (n1,m1) R (n3, m3). If m2 = 0, then (3.7) shows m1n2 = 0 and
m3n2 = 0. Since n2 is nonzero, these latter equations give m1 = 0 = m3. The
equation (3.8) then holds trivially, so again (n1,m1) R (n3,m3).

In Figure 3.1, the equivalence classes for R are the sets of solid dots lying on
the same line through the origin. (A few of these lines have been drawn.) The
set Q of rational numbers is defined to be the set XR of equivalence classes.
For an element (n,m) of X, write m/n or

m

n
= [(n,m)]R

for the corresponding equivalence class. If n = 1, the class is often written
just as m instead of m/1. If m = 0, the class is often written just as 0
instead of 0/n. For nonzero rationals m/n, a preferred representative is the
one in lowest terms, meaning n > 0 and gcd(n,m) = 1. Thinking of the
rational as a line through the origin in Figure 3.1, this representative is the
first dot encountered on proceeding along the line to the right from the origin
(Exercise 9).
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The set Q of rational numbers has a well defined multiplication given by

m1

n1
· m2

n2
=

m1m2

n1n2
. (3.9)

It has a well-defined addition given by

m1

n1
+

m2

n2
=

m1n2 + m2n1

n1n2
. (3.10)

The multiplication (3.9) and addition (3.10) appear to depend on the choice
of the particular representatives (n1,m1) and (n2, m2). However, saying that
these operations are “well defined” means that the same answer is obtained in
each case, regardless of the particular choice of representative. For example, if
m1/n1 = m′

1/n′1 and m2/n2 = m′
2/n′2, the definition (3.6) of R gives m1n

′
1 =

m′
1n1 and m2n

′
2 = m′

2n2. Then m1m2n
′
1n
′
2 = m′

1m
′
2n1n2, so

m1m2

n1n2
=

m′
1m

′
2

n′1n
′
2

,

showing that the multiplication (3.9) is well defined. Verification that the
addition (3.10) is well defined is assigned as Exercise 7.

The equivalence relation R on the set X actually arises as the kernel relation
of the division function

\ : X → R; (n,m) 7→ n−1m (3.11)

(Exercise 8). The set Q of rationals is usually identified with the image of
the function (3.11), embedded in the codomain R. This is possible because
of the isomorphism between the set XR of kernel classes and the image of
(3.11). In the next section, the First Isomorphism Theorem will provide a
comparable isomorphism for every function. To conclude this section, we show
that the function (3.11) is not surjective, proving the existence of irrational
real numbers, real numbers that are not expressible in the form n−1m with
(n, m) in X.

THEOREM 3.9
Irrational numbers exist. In particular,

√
2 is not rational.

PROOF Suppose that
√

2 is rational, say m/n. Then (m/n)2 = 2, so we
obtain the equation

m2 = 2n2

between positive integers. However, there can be no such equation, since
it would violate Theorem 1.14 (page 15). Indeed, Theorem 1.13 yields a
factorization

m = 2epe2
2 . . . per

r
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of m and a factorization
n = 2fpf2

2 . . . pfr
r

of n. Then the factorization of m2 contains the even number 2e of prime
factors 2, while the factorization of the same number m2 in the form 2n2

contains the odd number 1 + 2f of prime factors 2. This contradicts the
uniqueness part of the Fundamental Theorem of Arithmetic.

3.4 The First Isomorphism Theorem for Sets

The division function (3.11) decomposes as a composite of the surjection
X → XR, the isomorphism XR

∼= Q, and the injection Q ↪→ R. The topic
of this section, the First Isomorphism Theorem for Sets, shows that every
function can be written as a composition

〈injection〉 ◦ 〈isomorphism〉 ◦ 〈surjection〉 .
Consider a function f : X → Y . Since the kernel relation ker f is an equiva-
lence relation, Proposition 3.6(a) shows that there is a surjective function

s : X → Xker f ;x 7→ [x]ker f . (3.12)

On the other hand, there is an injection

j : f(X) ↪→ Y ; y 7→ y (3.13)

inserting the image f(X) as a subset into the codomain Y . The remaining
ingredient is an isomorphism between the set Xker f of kernel classes and the
image f(X).

PROPOSITION 3.10
Let f : X → Y be a function. Then there is a well-defined bijection

b : Xker f → f(X); [x]ker f 7→ f(x) . (3.14)

PROOF It will first be shown that b is a well-defined injection. Note that
well-definedness is an issue, since the specification (3.14) apparently depends
on the choice of the representative x for the kernel class [x]ker f . However, for
elements x and x′ of X, we have

[x]ker f = [x′]ker f if and only if x ker f x′ if and only if f(x) = f(x′)

by Proposition 3.5 and the definition (3.3) of the kernel relation. Reading
in the “only if” direction shows that b is well defined. Reading in the “if”
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direction shows that b is injective. Finally, it is immediate that b is surjective,
by the definition (2.4) of the image f(X).

We now obtain the First Isomorphism Theorem for Sets. (Later, it will be
embellished with additional algebraic structure.)

THEOREM 3.11 (First Isomorphism Theorem for Sets.)
Let f : X → Y be a function. Then f decomposes as the composite

f = j ◦ b ◦ s

of the surjection s of (3.12), the bijection b of (3.14), and the injection j of
(3.13).

The theorem is summarized in the following diagram, of the kind proposed
in Section 2.2:

X
f−−−−→ Y

s

y
xj

Xker f −−−−→
b

f(X)

Figure 3.2 presents a more naive illustration that may nevertheless be helpful.

3♣

K♦
10♦

A♥
Q♥

J♥

♣
♦

♥ ♠

3♣

K♦
10♦

A♥
Q♥

J♥

♣
♦

♥

X

Xker f

²
±

¯
°

Y

f(X)
²
±

¯
°

¾

½

»

¼
-f

-b

6
j

?s

@
@

@
@

@
@@

FIGURE 3.2: An illustration of the First Isomorphism Theorem.
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The domain X is the set of cards in a hand. The codomain Y is the full
set of suits. The function f maps each card in the hand to its suit, so two
cards are in the relation ker f if and only if they lie in the same suit. The
equivalence class

[Q♥]ker f = {J♥, Q♥, A♥}
consists of all the hearts in the hand, the class

[K♦]ker f = {10♦,K♦}

consists of all the diamonds in the hand, and the class [3♣]ker f contains the
unique club in the hand. The image

f(X) = {♥,♦,♣}

is the set of suits appearing in the hand. The First Isomorphism Theorem
exhibits this set as isomorphic to the set

Xker f = {[Q♥]ker f , [K♦]ker f , [3♣]ker f}

of equivalence classes. Indeed, both f(X) and Xker f each have 3 elements.
The fact that the 3 elements of the set Xker f are each themselves sets is
irrelevant here. When dealing with sets of equivalence classes, you disregard
the internal details of the classes for a moment, and just consider each class
as an element.

3.5 Modular arithmetic

Fix a positive integer d. For each integer a, define a mod d by

a = qd + (a mod d) . (3.15)

In other words, a mod d is the remainder given by the Division Algorithm
with a as dividend and d as divisor. (Compare Proposition 1.6, page 7.)
Consider the function

f : Z→ N; a 7→ a mod d . (3.16)

The kernel classes [a]mod d of this function are known as congruence classes
modulo d. Two integers a and b are said to be congruent modulo d, written

a ≡ b mod d , (3.17)

if they are related by the kernel relation ker f , or (equivalently) if they lie in
the same congruence class, or if they leave the same remainder after division
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by d. To facilitate working with (3.17), it is helpful to summarize yet more
equivalent forms of the relation.

PROPOSITION 3.12 (Characterizations of congruence.)
Let d be a positive integer. For integers a and b, the following are equivalent:

(a) a ≡ b mod d;

(b) d divides a− b;

(c) a− b is a multiple of d.

PROOF The equivalence of (b) and (c) is (1.9). Now if (c) holds, say
a− b = rd for some integer r, we have

b = a− rd = qd + (amod d)− rd = (q − r)d + (amod d),

using (3.15). It follows that (bmod d) = (amod d), so (a) holds. Conversely,
suppose that (a) holds, say a = qd+(a mod d) and b = q′d+(a mod d). Then
a− b = qd− q′d = (q − q′)d, so (c) holds.

The bijection b of the First Isomorphism Theorem provides an isomorphism

Zmod d → Z/d; [a]mod d 7→ a mod d (3.18)

between the set of congruence classes modulo d and the set

Z/d = {0, 1, 2, . . . , d− 1}

of remainders or integers modulo d, the image of the function (3.16). The
isomorphism is often used to identify a congruence class with its representative
remainder, so the set of congruence classes is then written as Z/d.

For d = 2, the set Z/2 = {0, 1} consists of the two bits or binary digits 0
and 1. The remainder 0 stands for the set of even integers, while 1 stands for
the set of odd integers. Now these sets of odd and even integers follow simple
arithmetical rules, summarized by the tables in Figure 3.3. The left-hand
table means that the sum of two even integers is even, the sum of an odd and

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

FIGURE 3.3: Addition and multiplication modulo 2.
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an even integer is odd, and the sum of two odd integers is even. The right-
hand table means that the product of two even integers is even, the product
of an odd and an even integer is even, and the product of two odd integers is
odd. Similar modular arithmetic holds for general positive divisors d.

PROPOSITION 3.13
Let d be a positive integer. Suppose that for integers ai and bi (with i = 1, 2),

a1 ≡ b1 mod d and a2 ≡ b2 mod d . (3.19)

Then

a1 + a2 ≡ b1 + b2 mod d and a1 · a2 ≡ b1 · b2 mod d . (3.20)

PROOF By Proposition 3.12 and (3.19), there are integers r1 and r2 with

a1 − b1 = r1d and a2 − b2 = r2d .

Then

(a1 + a2)− (b1 + b2) = (a1 − b1) + (a2 − b2) = r1d + r2d = (r1 + r2)d

and

a1a2 = (b1 + r1d)(b2 + r2d)
= b1b2 + (r1b2 + b1r2 + r1r2)d ,

so Proposition 3.12 yields the required relations (3.20).

COROLLARY 3.14
There are well-defined operations

[a]mod d + [b]mod d = [a + b]mod d (3.21)

and
[a]mod d · [b]mod d = [a · b]mod d (3.22)

on the sets Zmod d and Z/d.

Note that for each element a of Z/d, the function

Z/d → Z/d;x 7→ a + x

is the permutation
(
(0mod d) (1mod d) (2mod d) . . . (−1mod d)

)a

of the cyclic group Cd (compare Example 2.30).
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3.6 Exercises

1. Let X be a set of sets. Show that isomorphism between members of X
is an equivalence relation on X.

2. For the functions sq of (2.1) and abs of (2.2), show that

ker sq = ker abs .

3. Verify (3.5).

4. Let f : X → Y be a function. Show that the following two conditions
are equivalent:

(a) f is injective;

(b) For each element x of X, the equivalence class [x]ker f has only one
element.

5. Show that the set of natural numbers may be chosen as a particular set
of representatives for the equivalence classes of the equal kernel relations
of Exercise 2.

6. Show that the set of nonpositive numbers may be chosen as a set of
representatives for the equivalence classes of the equal kernel relations
of Exercise 2.

7. Verify that the addition (3.10) of rationals is well defined.

8. (a) Show that the relation R of (3.6) on the set X is the kernel relation
of the division function (3.11).

(b) Conclude directly that R is an equivalence relation, without using
Proposition 3.8.

9. Suppose that n is a positive integer and m is a nonzero integer. Show
that gcd(n,m) = 1 if and only if there is no element of the set X lying
on the interior of the line segment from the origin to (n,m).

10. Show that
√

3 is irrational.

11. Show that 3
√

2 is irrational.

12. Deal yourself a hand of cards, and use the First Isomorphism Theorem to
analyze the function mapping each card in the hand to its suit. Identify
the set of equivalence classes for the kernel relation of the function.
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13. Let a, b, and d be positive integers. Show that

a ≡ b mod d

if and only if a and b have the same rightmost digit in their base d
representation (compare Exercise 19 in Chapter 1).

14. Show that a positive integer n cannot be a perfect square if its decimal
representation ends in one of the digits 2, 3, 7, or 8.

15. Consider the numbers

1 2 3 4 5 6 7 8 9 10 .

Is it possible to put positive or negative signs in front of each, so that
the total sum of the signed numbers is zero?

16. Repeat Exercise 15, this time with the numbers

1 2 3 4 5 6 7 8 9 10 11 .

17. Show that log2 3 is irrational.

18. Consider an angle θ with
0 < θ <

π

2
.

Suppose that

cos θ =
l

n
and sin θ =

m

n
are rational numbers, with positive integers l, m, and n. Show that l
and m cannot both be odd numbers.

19. Which of the following three conditions determines the kernel relation
R of the cosine function cos : R→ R; x 7→ cos x?

(a) x R y if and only if x = ±y .
(b) x R y if and only if x = 2πn± y for some integer n .
(c) x R y if and only if x− y = 2πn for some integer n .

20. Define a relation P on the set R of real numbers by

x P y if and only if x− y = 2nπ for some integer n .

Show directly that P is an equivalence relation on R.

21. Show that the relation P of Exercise 20 is the kernel relation of the
column vector-valued function

f : R→ R1
2; θ 7→

[
cos θ
sin θ

]
.

Conclude that P is an equivalence relation on R.
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3.7 Study projects

1. Tonal music. Consider the set X of frequencies of audible sounds,
measured in Hertz (or cycles per second). Define a relation R on X by
f1 R f2 if and only if

f1/f2 is an integral power . . . 2−3, 2−2, 2−1, 20, 21, 22, 23 . . . of 2 .

(a) Show that R is an equivalence relation on the set X.

A27.5 A55 A110 A220 A440 A880 A1760 A3520

FIGURE 3.4: A piano keyboard.

(b) If the note A (compare Figure 3.4) labels the equivalence class

. . . , 55, 110, 220, 440, 880, 1760, . . . ,

describe how other notes also correspond to equivalence classes.
(c) Explain why the equivalence classes are more important in music

than the actual frequencies themselves.

2. Continued fractions. Theorem 3.9 shows that there are real numbers
s, for example

√
2, that are not rational. In Figure 3.1, this means that

the line of slope s through the origin moves off to infinity on the right
without ever exactly hitting a solid dot (n,m). Nevertheless, the line
does come very close to various dots along the way. For example, the
line of slope

√
2 only narrowly misses (2, 3), (5, 7), (12, 17), (29, 41), etc.

Which dots are close to a line of irrational slope s? How can we find
good rational approximations to real numbers like e and π?
The answer is given by continued fractions. A continued fraction is an
expression of the form

x0 +
1

x1 +
1

x2 +
1

. . . +
1

xn−1 +
1
xn
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or, equivalently,

x0 + 1

/(
x1 + 1

/(
x2 + 1

/(
· · ·+ 1

/(
xn−1 + 1/xn

)
. . .

)))
.

Since these expressions are extremely unwieldy, they are rewritten as
[[

x0, x1, . . . , xn−1, xn

]]
. (3.23)

In other words,
[[

x0

]]
= x0 and

[[
x0, x1, . . . , xi, xi+1

]]
=

[[
x0, x1, . . . , xi +

1
xi+1

]]
(3.24)

for natural numbers i. In order to recover a fraction from (3.23), define
pi and qi for i ≥ −2 by the initial setting

[
p−1 p−2

q−1 q−2

]
=

[
1 0
0 1

]
(3.25)

and the recurrence

pi = xipi−1 + pi−2 (3.26)
qi = xiqi−1 + qi−2 (3.27)

for all natural numbers i.

(a) Use induction to prove that
∣∣∣∣
pk−1 pk−2

qk−1 qk−2

∣∣∣∣ = (−1)k (3.28)

for all natural numbers k.

(b) Consider the equation

[[
x0, x1, . . . , xk−1, xk

]]
=

pk

qk
(3.29)

for natural numbers k. Show that it holds for k = 0. If it holds for
k = n, use (3.26) and (3.27) to deduce that

[[
x0, x1, . . . , xn−1, xn

]]
=

xnpn−1 + pn−2

xnqn−1 + qn−2
. (3.30)

Replace xn by xn + 1/xn+1 on both sides of (3.30). Use (3.24)
to rewrite the left-hand side, and simplify the right-hand side to
obtain (3.29) with k = n + 1. Conclude that (3.29) holds for all
natural numbers k by induction. As a corollary, deduce that (3.30)
holds for all natural numbers n.
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(c) Use (3.29) to express
[[

1, 2, 2
]]

and
[[

1, 2, 2, 2
]]

as rational numbers.

3. Approximating irrationals. For a real number x, the floor bxc is
defined to be the largest integer l with l ≤ x. The fractional part of x
is x− bxc.

(a) If x is an irrational number, show that the fractional part is an
irrational number, with 0 < x− bxc < 1.

(b) If x is an irrational number, show that the reciprocal (x−bxc)−1 of
the fractional part of x is an irrational number with 1 < (x−bxc)−1.

(c) Let s be an irrational number. Define a sequence of real numbers
si by s0 = s and

si+1 = (si − bsic)−1

for i in N. Show that sk is irrational for all natural numbers k.

(d) Show that 1 ≤ bskc for all positive integers k.

(e) Show that si = bsic+ 1/si+1 for all natural numbers i.

(f) Show that

s =
[[bs0c, bs1c, . . . , bsi−1c, bsic, si+1

]]
(3.31)

for all natural numbers i.

(g) Setting xi = bsic for all natural numbers i, consider the numbers
pi and qi defined by (3.25) through (3.27) above. Show that pk and
qk are integers, with qk ≥ k for all natural numbers k.

(h) Use (3.31) (with i = k), and (3.30) (with n = k + 1, and sk+1 in
place of xk+1), to show that

s =
sk+1pk + pk−1

sk+1qk + qk−1
(3.32)

(i) Use (3.32) to show that

s− pk

qk
=

−1
qk (sk+1qk + qk−1)

∣∣∣∣
pk pk−1

qk qk−1

∣∣∣∣ .

(j) Using (3.28), along with the inequalities sk+1 > 1 from (b) and
qk ≥ k from (g) above, conclude that the irrational number s is
approximated by the rational number pk/qk to within a tolerance
given by ∣∣∣∣s−

pk

qk

∣∣∣∣ ≤
1
k2

for all positive integers k.
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(k) Use continued fractions to compute some rational approximants to
e and π. For example, with s = s0 = π = 3.14159 . . . , we have
s1 = (π − 3)−1 = 7.06251 . . . , so x0 = 3, x1 = 7, and

[[
x0, x1

]]
=

[[
3, 7

]]
=

22
7

.

(l) Compare your approximants from (k) with those that are given by
truncating the series

1
0!

+
1
1!

+
1
2!

+
1
3!

+ . . .

for e and

1
2

+
1
2
· 1
23 · 3 +

1 · 3
2 · 4 ·

1
25 · 5 +

1 · 3 · 5
2 · 4 · 6 ·

1
27 · 7 + . . .

for π/6.

3.8 Notes

Section 3.5

Many authors use the notation Z2 to denote the set of integers modulo 2
(and similar notation for other moduli). However, this notation gives no hint
of the inherent quotient structure (Example 5.20, page 103). Furthermore, it
clashes with the standard notation Z2 for the set of dyadic integers (Study
Project 3 in Chapter 5).



Chapter 4

GROUPS AND MONOIDS

Chapter 2 showed how sets of functions could form semigroups, monoids, or
groups. Many other sets have a similar structure, even though they do not
consist of functions. In order to study the structure, the key properties of the
sets of functions are abstracted and formulated in general terms.

4.1 Semigroups

If S is a semigroup of functions, then we may consider function composition
as a map

S × S → S; (g, f) 7→ g ◦ f (4.1)
whose domain is the set S × S of ordered pairs (g, f) of elements of S. The
closure (2.9) under composition guarantees that S may serve as the codomain
of the map (4.1). Recall that function composition is always associative.
The abstract properties of semigroups of functions are then captured by the
following definition.

DEFINITION 4.1 (Semigroups.) Let S be a set equipped with a map

S × S → S; (x, y) 7→ x · y (4.2)

assigning an element x · y or xy of S to each ordered pair (x, y) of elements
of S.

(a) In general, the map (4.2) is known as a multiplication on S or (more
formally) as a binary operation on S.

(b) The existence of such a map is described as the closure of the set S with
respect to the multiplication.

(c) The pair (S, ·) consisting of the set S with its multiplication · is called
a semigroup (or an abstract semigroup) if the associative law

x · (y · z) = (x · y) · z (4.3)

holds for all elements x, y, and z of the set S.

67
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DEFINITION 4.2 (Commuting elements.) Two elements x and y of
a semigroup (S, ·) are said to commute if x · y = y · x. The semigroup (S, ·)
is said to be commutative if x · y = y · x for all x, y in S.

Example 4.3 (The real interval (1,∞).)
Let S be the set or interval (1,∞) of real numbers x with x > 1. Then S forms
a semigroup under the usual (associative and commutative) multiplication of
real numbers.

Example 4.4 (Irrationals.)
Let S be the set of irrational real numbers. Then S does not form a semi-

group under the usual associative multiplication of real numbers, since
√

2 is
a member of S (compare Theorem 3.9, page 55), but x ·x = 2 is not a member
of S.

Although the binary operation (4.2) on a general semigroup S is called a
“multiplication,” it does not have to be an actual multiplication of numbers
in the usual sense. Here is one example. For another, see Example 4.9 below.

Example 4.5 (Positive integers.)
Let S be the set of positive integers. Define a “multiplication” on S by

m · n = gcd(m,n) . (4.4)

Then (S, ·) forms a commutative semigroup.

Function composition is always associative. But with general operations as
in (4.2), you should be careful not to take associativity for granted, even when
you are on familiar ground.

Example 4.6 (Integers under subtraction.)
Consider the set Z of integers. Then Z is closed under the operation of

subtraction:
Z× Z→ Z; (x, y) 7→ x− y .

However, Z does not form a semigroup under subtraction, since subtraction
is not associative. Indeed,

3− (5− 4) = 3− 1 = 2 ,

while
(3− 5)− 4 = (−2)− 4 = −6 .
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A semigroup S of functions always forms a semigroup (S, ◦), with function
composition as the “multiplication,” in the sense of the abstract Definition 4.1.
In general, this multiplication is not commutative (compare Example 2.3, page
29). However, Exercise 43 in Chapter 2 shows that disjoint cycles commute.

A semigroup S of functions may also provide the underlying set for an
abstract semigroup structure with a multiplication which is different from the
composition of functions. For example, the set P of power maps

pn : R→ R; x 7→ xn

for natural numbers n (compare Exercise 10 in Chapter 2) certainly forms a
semigroup of functions. On the other hand, it also forms a semigroup under
the usual “componentwise” function multiplication of calculus:

pm · pn = pm+n

or
(pm · pn)(x) = pm(x) · pn(x) = xm · xn = xm+n = pm+n(x)

for x in R. Compare this with

pm ◦ pn = pmn

for the function composition.

4.2 Monoids

A monoid of functions on a set X is a semigroup of functions on X that
contains the identity function idX on X. As far as function composition is
concerned, the key property of the identity function is (2.12). This property
is abstracted by (4.5) below.

DEFINITION 4.7 (Abstract monoids.) Let (M, ·) be a semigroup with
· as multiplication. Then M is said to form a monoid (or an abstract monoid)
(M, ·, e) if it contains an element e satisfying

e · x = x = x · e (4.5)

for all x in M . The element e is known as the identity element of the monoid
M . (Proposition 4.13 below shows that the identity element is unique.)

Example 4.8 (The real interval (1,∞).)
The semigroup S = (1,∞) of Example 4.3 does not form a monoid. Certainly
S does not contain the usual identity element 1 for the multiplication of real
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numbers. In fact, for each element e of S, we have e · x > x for all x in S.
Thus no element e of S can satisfy the identity property (4.5).

Example 4.9 (Natural numbers.)
The set N of natural numbers forms a commutative monoid under addition,

with 0 as the identity element. On the other hand, the semigroup of positive
integers under addition does not form a monoid (Exercise 4).

Example 4.10 (Least common multiples.)
Let S be the set of positive integers. Define a “multiplication” on S by

m · n = lcm (m, n) . (4.6)

Then (S, ·, 1) forms a commutative monoid.

Example 4.11 (Intersection.)
Let n be a natural number. Let P(n) denote the set of subsets of the set

n of natural numbers less than n — compare (2.26). Then P(n) forms a
commutative monoid under the “multiplication” ∩ of intersection:

X ∩ Y =
{
z

∣∣ z in both X and Y
}

with the full set n as the identity element. (See Exercise 6.)

Example 4.12 (Matrices.)
The set R2

2 of all 2 × 2 real matrices forms a monoid under the operation
of matrix multiplication. The identity element is the 2 × 2 identity matrix
(2.13). Note that this monoid is not commutative (Exercise 9).

Definition 4.7 refers to the identity element of a monoid. The definite article
is justified by the following result.

PROPOSITION 4.13 (Uniqueness of the identity.)
Let M be a monoid. If e and f are identity elements of M , then e = f . Thus
the identity element of a monoid is unique.

PROOF We have e = e · f = f . The first equality holds since f is an
identity element. The second equality holds since e is an identity element.
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4.3 Groups

Recall that functions are bijections if and only if they are invertible. Thus
a monoid G of functions on a set X is a group of permutations of X if and
only if each element f of G has an inverse element f−1 in G, with

f ◦ f−1 = idX = f−1 ◦ f .

This property is abstracted by (4.7) below.

DEFINITION 4.14 (Abstract groups.) A monoid (G, ·, e) is a group
(or an abstract group) if each element x of G has an inverse x−1 in G with

x · x−1 = e = x−1 · x . (4.7)

In other words, a group (G, ·, e) is a set G with a multiplication · satisfying
the following properties:

Closure: x · y lies in G for all x, y in G;

Associativity: x · (y · z) = (x · y) · z for all x, y, z in G;

Identity: There is an element e in G with e · x = x = x · e for all x in G;

Inverses: For each x in G, there is x−1 in G with x · x−1 = e = x−1 · x.

Commutative groups are often described as abelian.

Consider the four properties of Definition 4.14. Note that semigroups are
required to satisfy the closure and associativity, while monoids are required
to satisfy closure, associativity, and the identity property.

The uniqueness of inverses of invertible functions (Proposition 2.23, page
35) has its abstract counterpart in groups (see Exercise 11 for the proof):

PROPOSITION 4.15 (Uniqueness of inverses.)
In a group G, each element x has a unique inverse.

We now consider some examples of groups.

Example 4.16 (Real numbers under addition.)
The real numbers form a group (R, +, 0) with addition as the commutative

“multiplication” operation. The “inverse” or additive inverse of a real number
r is its negation −r.
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In general, if the “multiplication” in a group G is denoted by an addition
+ as in Example 4.16, the group G is described as additive. Its identity
element is written as a zero, and the inversion is described as negation. These
conventions are normally reserved for abelian groups.

Example 4.17 (Muliplication of nonzero reals.)
Under multiplication, the nonzero real numbers form a commutative group

(R∗, ·, 1).

Example 4.18 (The general linear group.)
Let GL(2,R) be the set of invertible 2 × 2 matrices with real entries. Then

GL(2,R) forms a nonabelian group under the usual matrix multiplication,
having the identity matrix I2 as the identity element of the group, and with
the usual inversion of matrices. The group GL(2,R) is called the (real) general
linear group of dimension 2.

Examples 4.17 and 4.18 are special cases of a general source of abstract
groups: sets of invertible elements of monoids.

DEFINITION 4.19 (Invertible elements.) Let (M, ·, e) be a monoid.
An element u of M is said to be invertible or a unit if there is an element v
of M such that u · v = e = v · u.

PROPOSITION 4.20 (Invertible elements form a group.)
Let (M, ·, e) be a monoid. Then the set M∗ of invertible elements of M forms
a group (M∗, ·, e).

PROOF We verify the four conditions listed in Definition 4.14.
Closure: Suppose that u1 and u2 are units of M , with u1v1 = e = v1u1 and
u2v2 = e = v2u2. Then

(u1u2)(v2v1) = u1u2v2v1 = u1ev1 = u1v1 = e (4.8)

and
(v1v2)(u2u1) = v1v2u2u1 = v1eu1 = v1u1 = e , (4.9)

so u1u2 is also a unit.
Associativity: The associativity of the multiplication in M∗ is a special case
of the associativity of the multiplication in the monoid M .
Identity: The identity element of M∗ is the identity element e of M : The
equations

e · u = u = u · e
in M∗ are special cases of the equation (4.5) in M .
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Inverses: By the definition of the set M∗, each element u of M∗ has an
inverse v. Note that v lies in M∗, since it has u as its inverse.

DEFINITION 4.21 (The group of units.) For a monoid (M, ·, 1), the
group (M∗, ·, 1) is known as the group of units of the monoid M .

Example 4.22 (Integers under multiplication.)
The integers form a commutative monoid (Z, ·, 1) under multiplication. The
group of units of the monoid of integers is {±1}.

Example 4.23 (Invertible real numbers.)
The notation of Definition 4.21 is consistent with Example 4.17: the set of

units of the monoid of real numbers under multiplication is the set R∗ of
nonzero real numbers.

Example 4.24 (The group of units of a group.)
If (G, ·, 1) is a group, then it is certainly a monoid: Just forget the inversion.
Now (G, ·, 1) is its own group of units. In particular, Proposition 4.15 and the
proof of Proposition 4.20 — specifically (4.8) and (4.9) — yield the important
formula

(u1u2)−1 = u−1
2 u−1

1 (4.10)

for elements u1, u2 of a group G. Note the generalization of (4.10) given in
Exercise 16.

4.4 Componentwise structure

Starting with given examples of semigroups, monoids, or groups, there are
methods to obtain new semigroups, monoids, or groups from the given ones.
One such method is the direct product construction. Recall that for sets X
and Y , the (external) direct product or product of X and Y is the set

X × Y = {(x, y) | x in X, y in Y } (4.11)

of ordered pairs (x, y) of elements x from X and y from Y (Figure 4.1). In
this context, the sets X and Y are known as the (direct) factors of the direct
product. The set X × Y is sometimes called the cartesian product of X and
Y , since it follows René Descartes’ recipe for constructing the real plane as
R×R. Recall that two ordered pairs (x, y) and (x′, y′) are equal if and only if
x = x′ and y = y′. We write X2 for X ×X, dsecribing it as the direct square
of the set X.
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- X

6
Y

(x, y)sy

x

FIGURE 4.1: The product X × Y .

Now suppose that X is a semigroup under the multiplication ◦X , while Y is
a semigroup under the multiplication ◦Y . We may then define a multiplication
on X × Y by

(x1, y1) ◦X×Y (x2, y2) = (x1 ◦X x2, y1 ◦Y y2) (4.12)

for x1, x2 in X and y1, y2 in Y . The multiplication (4.12) is described as a
componentwise multiplication, since it works individually on the respective x-
and y-components of the ordered pairs. The following result is easily verified
(Exercise 18).

PROPOSITION 4.25 (Direct product semigroup.)
Let (X, ◦X) and (Y, ◦Y ) be semigroups. Then under the componentwise mul-
tiplication (4.12), the direct product X × Y forms a semigroup.

DEFINITION 4.26 The semigroup (X×Y, ◦X×Y ) of Proposition 4.25 is
called the (external) direct product of the semigroups (X, ◦X) and (Y, ◦Y ).

Example 4.27 (The real plane.)
The set R of real numbers forms a semigroup under multiplication. Then the
real plane R2 forms a semigroup under componentwise multiplication.

If the semigroups (X, ◦X) and (Y, ◦Y ) are monoids, with respective identity
elements eX and eY , then the componentwise identity element is the element

eX×Y = (eX , ey) (4.13)

of X×Y . The following result, readily verified, is similar to Proposition 4.25.
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PROPOSITION 4.28
Let (X, ◦X , eX) and (Y, ◦Y , eY ) be monoids. Then under the componentwise

multiplication (4.12), the direct product X × Y forms a monoid

(X × Y, ◦X×Y , eX×Y )

with the componentwise identity element (4.13).

DEFINITION 4.29 (The direct product of two monoids.) The
monoid (X×Y, ◦X×Y , eX×Y ) of Proposition 4.28 is called the (external) direct
product of the two monoids (X, ◦X , eX) and (Y, ◦Y , eY ).

The final step in our examination of componentwise structure considers
groups. Suppose that (X, ◦X , eX) and (Y, ◦Y , eY ) are groups. Then for an
element (x, y) of X × Y , define the componentwise inverse

(x, y)−1 = (x−1, y−1) (4.14)

as an element of X × Y .

PROPOSITION 4.30
Let (X, ◦X , eX) and (Y, ◦Y , eY ) be groups. Then the direct product X × Y

forms a group
(X × Y, ◦X×Y , eX×Y )

under the componentwise multiplication (4.12), the componentwise identity
element (4.13), and with componentwise inverses (4.14).

For the proofs of Propositions 4.28 and 4.30, see Exercise 19.

DEFINITION 4.31 (The direct product of two groups.) The group

(X × Y, ◦X×Y , eX×Y )

of Proposition 4.30 is called the (external) direct product of the two groups
(X, ◦X , eX) and (Y, ◦Y , eY ).

Example 4.32 (The real plane.)
The set R of real numbers forms a group under addition. Then the real plane
R2 forms a group under componentwise addition:

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) .

Note that this is just the usual addition for 2-dimensional real vectors.
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The following theorem provides a good illustration of how componentwise
structure is used.

THEOREM 4.33 (Groups of units of products.)
Let (M1, ·, e1) and (M2, ·, e2) be monoids. Then the group of units (M1×M2)∗

of the product monoid M1×M2 is the product M∗
1 ×M∗

2 of the groups of units
M∗

1 , M∗
2 of the respective factors M1, M2.

PROOF The sets (M1×M2)∗ and M∗
1×M∗

2 are both subsets of the product
M1×M2. To prove the equality of the two subsets, it will be shown that each
contains the other.

Let (u1, u2) be an element of M∗
1 ×M∗

2 . Thus there are elements v1 of M1

and v2 of M2 such that

u1v1 = e1 = v1u1 and u2v2 = e2 = v2u2 . (4.15)

Then in the product monoid
(
M1 ×M2, ·, (e1, e2)

)
, we have

(u1, u2)(v1, v2) = (e1, e2) = (v1, v2)(u1, u2) , (4.16)

so that (u1, u2) lies in (M1 ×M2)∗.
Conversely, suppose that (u1, u2) lies in (M1 ×M2)∗: There is an element

(v1, v2) of M1 ×M2 such that (4.16) holds. In particular,

(u1v1, u2v2) = (e1, e2) = (v1u1, v2u2) .

The equality of the corresponding first components in this equation gives

u1v1 = e1 = v1u1 ,

so that u1 lies in M∗
1 . Examination of the second components shows that u2

lies in M∗
2 . It follows that (u1, u2) is an element of M∗

1 ×M∗
2 .

It is relatively straightforward to extend the product constructions to larger
numbers of factors. For example, a product X × Y × Z of sets X, Y , and Z
may be built recursively as X × (Y × Z), or directly as the set

X × Y × Z = {(x, y, z) | x in X, y in Y, z in Z}
of ordered triples. The product X ×X ×X is known as the (direct) cube X3

of the set X. For instance, the direct cube R3 of the additive group (R, +, 0)
of real numbers, with componentwise structure, is the group of 3-dimensional
vectors.

Componentwise structure is not limited to n-tuples. For example, the set
R2

2 of 2 × 2 real matrices carries a componentwise additive group structure,
with addition given by the usual addition

[
b11 b12

b21 b22

]
+

[
a11 a12

a21 a22

]
=

[
b11 + a11 b12 + a12

b21 + a21 b22 + a22

]
(4.17)
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of matrices. The same set carries a componentwise monoid structure, with
multiplication given by the componentwise multiplication

[
b11 b12

b21 b22

]
◦

[
a11 a12

a21 a22

]
=

[
b11a11 b12a12

b21a21 b22a22

]
(4.18)

of matrices, and with the 2× 2 all ones matrix

J2 =
[
1 1
1 1

]

as the identity element. The matrix product (4.18) is called the Hadamard
product . It is certainly different from the usual matrix multiplication (2.7).
For an application, see (7.27), and also Study Project 5 in Chapter 5.

4.5 Powers

Another source of componentwise structure is found in sets of functions
f : X → S from a certain domain X to a codomain S that carries algebraic
structure. For example, in calculus the componentwise sum f + g of two real-
valued functions f : R→ R and g : R→ R is determined by the specification

(f + g)(x) = f(x) + g(x)

for all x in R. Under this operation, the set RR of all real-valued functions
forms an additive group, with the constant function zero as the zero (identity
element), and with the inverse of a function f given by the negation −f , so
that

(−f)(x) = −f(x)

for all real x. Here is the general definition. Verification of the claims embod-
ied in the definition is deferred to Exercise 22.

DEFINITION 4.34 (Power structures.) Let X and S be sets. Consider
the set SX of all functions f : X → S from X to S.

(a) If S carries a semigroup structure (S, ·), then the X-th power (S, ·)X or
SX of the semigroup (S, ·) is the set SX equipped with the componentwise
multiplication f · g given by

(f · g)(x) = f(x) · g(x)

for x in X.
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(b) If S carries a monoid structure (S, ·, eS), then the X-th power (S, ·, eS)X

or SX of the monoid (S, ·, eS) is the X-th power semigroup (SX , ·), with
the constant function E : X → S; x 7→ eS as the componentwise identity
element.

(c) If S carries a group structure (S, ·, eS), then the X-th power (S, ·, eS)X

or SX of the group (S, ·, eS) is the X-th power monoid (SX , ·, E), with
the componentwise inverse of a function f : X → S given by f−1(x) =
f(x)−1 for each x in X.

If X is the n-element set n = {0, 1, . . . , n − 1} for a positive integer n, then
the powers Sn are known as the n-th powers Sn.

Example 4.35 (Bit strings.)
Let n be a positive integer. A bit string of length n is an element

b = bn−1bn−2 . . . b2b1b0

of
(
Z/2

)n (with bi as the value b(i) of i for 0 ≤ i < n). For example, the bit
string b might have been obtained as the binary (or base 2) expansion of the
natural number

bn−12n−1 + bn−22n−2 + · · ·+ b222 + b121 + b020

(compare Exercise 19 in Chapter 1). According to Definition 4.34, the set(
Z/2

)n of bit strings of length n inherits respective group structures under +
and monoid structures under · from the addition and multiplication modulo
2 on Z/2 displayed in Figure 3.3.

Example 4.36 (Vectors.)
Let n be a positive integer. An n-vector or n-dimensional real vector is an

element
(x0, x1, . . . , xn−1)

of the power group Rn. For example, in special relativity a 4-vector

(ct, x1, x2, x3)

represents an event at time t and spatial location (x1, x2, x3) in a certain
frame of reference, c being the speed of light.

4.6 Submonoids and subgroups

Componentwise structure on product sets, as was studied in the preceding
sections, is one rich source of new semigroups, monoids, and groups. Another
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is found from subsets that are closed under the given structure. Let (S, ·) be
a semigroup. Let X be a subset of S with the closure property

x, y in X implies x · y in X . (4.19)

Then X forms a semigroup under the multiplication · inherited from S. The
closure property is given by definition, and the associativity of (X, ·) is just a
special case of the associativity given in the semigroup (S, ·).

DEFINITION 4.37 (Subsemigroups.) Let S be a semigroup, and let
X be a subset of S. Then X is described as a subsemigroup of the semigroup
S if it satisfies the closure property (4.19).

Trivially, the empty set is a subsemigroup of every semigroup.

Example 4.38 (Subsemigroups of the integers under addition.)
The set of negative integers forms a subsemigroup of the semigroup (Z,+) of
integers under addition. The set of odd integers does not form a subsemigroup,
since the closure property is violated by examples such as 1 + 3.

DEFINITION 4.39 (Submonoids.) A subset X of a monoid (M, ·, e)
is said to be a submonoid if it is a subsemigroup of the semigroup (M, ·), and
if it contains the identity element e of M .

If (X, ·, e) is a submonoid of a monoid (M, ·, e), then (X, ·, e) is itself a
monoid: The identity property (4.5) for X is just a special case of the identity
property (4.5) for M . Trivially, the set {e} consisting only of the identity
element is a submonoid of any monoid (M, ·, e) with e as its identity element.
Note that {e} is a subsemigroup by the identity property: e · e = e.

Example 4.40 (Submonoids of the integers under addition.)
The subsemigroup of negative integers does not form a submonoid of the

monoid (Z, +, 0) of integers under addition, since it does not contain the
identity element 0 of Z. On the other hand, the monoid (N, +, 0) of natural
numbers under addition (compare Example 4.9) does form a submonoid of
(Z, +, 0).

Example 4.41 (Stochastic matrices.)
A 2× 2 real matrix

A =
[
p1 p2

q1 q2

]

is said to be (row) stochastic if p1, p2, q1, q2 are all nonnegative,

p1 + p2 = 1 , and q1 + q2 = 1 .
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Note that the identity matrix I2 is stochastic. Let Π2
2 be the set of 2 × 2

stochastic matrices. Then Π2
2 forms a submonoid of the monoid R2

2 of all 2×2
matrices under matrix multiplication. (Compare Exercise 24.)

DEFINITION 4.42 (Subgroups.) A submonoid X of a group (G, ·, e)
is said to be a subgroup of G if it is closed under the inversion in G:

x in X implies x−1 in X . (4.20)

Note that the set {e} consisting only of the identity element is a subgroup
of any group (G, ·, e) with e as its identity element. Since a subgroup has to
be a submonoid, with an identity element, it has to be nonempty. There is a
quick way to check if a given nonempty subset X of a group G actually forms
a subgroup of G.

PROPOSITION 4.43 (The subgroup test.)
Let X be a nonempty subset of a group (G, ·, e). Then X is a subgroup of G
if and only if it satisfies the closure property

x, y in X implies x · y−1 in X . (4.21)

PROOF First, suppose that X is a subgroup of G, and that x and y are
elements of X. Then by the closure (4.20) under inversion, y−1 lies in X.
Since x and y−1 lie in X, the closure property (4.19) then guarantees that
x · y−1 lies in X.

Conversely, suppose that the nonempty subset X of the group G satisfies
the closure property (4.21). Since X is nonempty, it contains an element a.
Then the closure property (4.21) shows that the identity element e = a · a−1

lies in X. Again, for each element x of X, the closure property (4.21) shows
that the inverse x−1 = e ·x−1 lies in X. Finally, for x and y in X, the closure
property (4.21) shows that the product x · y = x · (y−1)−1 lies in X, so that
X forms a subsemigroup of (G, ·).

REMARK 4.44 In an additive group (G, +, 0), the closure property (4.21)
reduces to closure under the subtraction

x− y = x + (−y)

in G. If the operation of a group G is written as multiplication, it is sometimes
convenient to define x/y = x · y−1 , an operation known as right division.

Example 4.45 (Orthogonal matrices.)
A 2× 2 (or larger square) matrix A is said to be orthogonal if the products

AAT and AT A of A with its transposed matrix AT are the identity matrix I.
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In particular, the inverse of an orthogonal matrix A is its transpose AT , and
the identity matrix I is orthogonal. Then by Proposition 4.43, the nonempty
set O2(R) of orthogonal 2 × 2 real matrices forms a subgroup of the gen-
eral linear group GL(2,R) (compare Example 4.18). Indeed, if A and B are
orthogonal, the computations

(ABT )(ABT )T = ABT (BT )T AT = ABT BAT = AAT = I

and
(ABT )T (ABT ) = (BT )T AT ABT = BBT = I

show that ABT = AB−1 is orthogonal. The group O2(R) is called the (real)
orthogonal group of dimension 2.

We conclude this section with a classification of the subgroups of the group
of integers under addition.

THEOREM 4.46 (Subgroups of the integers.)
Let J be a subgroup of the group (Z, +, 0) of integers under addition. Then

there is a natural number d such that J consists of the set dZ of integral
multiples of d.

PROOF Since J is a subgroup, it contains the identity element 0. If
J = {0}, then J = 0Z, the set of multiples of 0.

Otherwise, J contains a nonzero integer n. In this case it contains a positive
integer (either n or −n). Consider the nonempty set S of positive elements
of J . By the Well-Ordering Principle, the set S has a least element d. Then
each integer multiple nd of d lies in J . Indeed if n is positive, nd is the sum

n︷ ︸︸ ︷
d + d + · · ·+ d

of n copies of d, which lies in J since J is closed under addition. If n is
negative, then nd = |n|(−d) is the sum

|n|︷ ︸︸ ︷
(−d) + (−d) + · · ·+ (−d)

of |n| copies of −d, which lies in J since J is closed under negation and
addition. Finally, 0d = 0 lies in J .

Now suppose that J contains an element a which is not a multiple of d.
Apply the Division Algorithm to express a as a = dq + r with 0 < r < d.
Then 0 < r = a−dq = a+(−dq) lies in J by Proposition 4.43. This contradicts
the choice of d as the smallest positive element of J .
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4.7 Cosets

A semigroup (G, ·) carries an associative multiplication of its elements. It
is very useful to extend this multiplication to subsets of G. Let X be a subset
of a semigroup (G, ·). If g is an element of G, define

Xg = {xg | x in X} and gX = {gx | x in X} . (4.22)

The sets of (4.22) are known respectively as the right and left cosets of the
subset X with the element g. For example, the subgroup dZ of the group
(Z, +, 0) in Theorem 4.46 is the coset of d in the semigroup (Z, ·). The notation
(4.22) is extended by setting XY or

X · Y = {x · y | x in X , y in Y } (4.23)

for subsets X and Y of a semigroup (G, ·). In particular, Xg = X · {g} and
{g} ·X = gX for an element g of G.

If X is a subset of a monoid G with identity element e, then the cosets eX
and Xe both coincide with the subset X. There are further relations between
the various cosets in a group (G, ·).

PROPOSITION 4.47 (Group cosets are isomorphic as sets.)
Let X be a subset of a group G. Then for elements g1, g2 of G, the cosets

Xg1, Xg2, and g1X are all isomorphic as sets.

PROOF The maps
X → Xg1; x 7→ xg1

and
Xg1 → X; y 7→ yg−1

1

are mutually inverse bijections, so X ∼= Xg1. Isomorphism is an equivalence
relation (compare Exercise 1 in Chapter 2). It follows that Xg1 and Xg2 are
isomorphic. Similarly, the maps

X → g1X; x 7→ g1x

and
g1X → X; y 7→ g−1

1 y

are mutually inverse bijections, so X ∼= g1X. The rest of the proposition
follows from the fact that isomorphism is an equivalence relation.

Since two finite sets are isomorphic if and only if they have the same number
of elements (compare Example 2.26, page 36), we obtain the following.
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COROLLARY 4.48 (Finite cosets are all the same size.)
Let X be a finite subset of a group G. Then for elements g1, g2 of G, the

cosets Xg1, Xg2, and g1X all have the same number of elements.

Cosets of subgroups are equivalence classes.

PROPOSITION 4.49
Let H be a subgroup of a group G.

(a) Define a relation R on G by

g1 R g2 if and only if hg1 = g2 for some h in H .

Then R is an equivalence relation on G.

(b) The equivalence classes for R are the right cosets Hg.

PROOF (a): Reflexivity: For g in G, we have eg = g with e in H.
Symmetry: Suppose g1 R g2, say hg1 = g2 with h in H. Then g1 = h−1g2,
so g2 R g1.
Transitivity: Suppose g1 R g2 and g2 R g3, say hg1 = g2 and h′g2 = g3 with
h, h′ in H. Then h′hg1 = h′g2 = g3, so g1 R g3.

(b) is immediate.

In the proof of Proposition 4.49(a), it is worth noting the parallel between
the three properties required for the equivalence relation R and the three
closure properties of the subgroup H:

Equivalence relation is . . . Subgroup . . .

. . . reflexive . . . contains the identity

. . . symmetric . . . is closed under inverses

. . . transitive . . . is closed under multiplication

The Klein 4-group V4 is a subgroup of the 24-element group S4 (compare
Exercise 39 in Chapter 2). In general, the number of elements of a subgroup
of a finite group is always a divisor of the total number of elements in the
group.

THEOREM 4.50 (Lagrange’s Theorem.)
Let H be a subgroup of a finite group G. Then the number |H| of elements

of H divides the number |G| of elements of G.
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PROOF By Propositions 4.49 and 3.5, two distinct right cosets of H are
disjoint. Suppose that there are j right cosets altogether. By Corollary 4.48,
each right coset has |H| elements. Then

|G| = j|H| , (4.24)

so |H| divides |G|.

The number j = |G|/|H| in (4.24) is called the index of H in the group
G. More generally, if G is an infinite group with a subgroup H, the index
of H is the (possibly infinite) number of right cosets of H in G. (Compare
Exercise 38.)

Lagrange’s Theorem is useful for limiting the possible subgroups of a given
finite group. For example, it shows that in the 24-element group S4, a sub-
group cannot be formed from the 9-element set consisting of the identity and
the 8 permutations (2.33). In other words, without any calculation required,
it shows that this 9-element set cannot be closed under multiplication.

In any group G with identity element e, the subgroup G is described as
improper , while the smallest subgroup {e} is described as trivial . A sub-
group H is proper if it is not improper. Since prime numbers are irreducible
(Proposition 1.11), Lagrange’s Theorem yields the following result.

PROPOSITION 4.51 (Groups of prime order.)
A group with a prime number of elements can have no proper, nontrivial

subgroups.

4.8 Multiplication tables

There are various ways to compute the product x · y of two elements x and
y in a group G. If G is a group of matrices, we may use matrix multiplication.
If G is a group of permutations, we may use function composition. A general
method uses a table, the multiplication table of the group.

Consider the Klein 4-group V4 of Example 2.31 (page 38). Writing the
elements as (0) = e, (0 1)(2 3) = a, (0 2)(1 3) = b, and (0 3)(1 2) = c, the
multiplication table appears as displayed in Figure 4.2. The table consists
of four parts, separated by the lines. The top left-hand corner may contain
the name of the group or its multiplication. The top right part consists of
the column labels. The bottom left-hand part consists of the row labels. The
bottom right-hand part is called the body . Note that in Figure 4.2, the group
elements are presented in the same order as column and row labels, with the
identity element appearing first. This is not necessary for a table to perform
its function of specifying the group products, but it is a convention that is
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V4 e a b c

e e a b c

a a e c b

b b c e a

c c b a e

FIGURE 4.2: Multiplication table of V4.

usually followed. Putting the identity element first as a column and row label
means that the first row and the first column of the body just repeat the
respective column and row labels in order. For this reason, the body alone
may be used to specify a group, the column labels being taken from the first
row of the body, and the row labels from the first column of the body.

The body of the table in Figure 4.2 has a particular feature: each row and
each column of the body contains each element of the group exactly once.

DEFINITION 4.52 (Latin squares.) For a natural number n, let Q be
a set with n elements. Then an n×n square containing each of the n elements
of Q exactly once in each row and each column is called a Latin square (on
the set Q).

Theorem 4.55 below shows that the Latin square property of the body of
the multiplication table of the Klein 4-group is actually typical of all finite
groups. The theorem is preceded by a pair of results holding in general (not
necessarily finite) groups.

PROPOSITION 4.53 (Cancellation in groups.)
Let G be a group, with elements x, y1, y2.

(a) If
x · y1 = x · y2 , (4.25)

then y1 = y2.

(b) If
y1 · x = y2 · x ,

then y1 = y2.

PROOF (a): Multiplying both sides of the equation (4.25) on the left by
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x−1, we obtain

y1 = e · y1 = x−1 · x · y1 = x−1 · x · y2 = e · y2 = y2 .

(b) is proved similarly (Exercise 41).

COROLLARY 4.54 (Existence and uniqueness of solutions.)
Consider the equation

x · y = z (4.26)

in a group (G, ·). If the equation (4.26) holds, knowledge of any two of the
elements x, y, z specifies the third uniquely.

PROOF If x and y are given, then z is specified uniquely by the multi-
plication in G. If x and z are given, then a solution y to the equation (4.26)
exists, namely y = x−1 · z. Indeed:

x · y = x · (x−1 · z) = (x · x−1) · z = e · z = z .

The solution is unique, by Proposition 4.53(a). The existence and uniqueness
of a solution x to (4.26) given y and z follow similarly (Exercise 42).

THEOREM 4.55 (Group tables are Latin squares.)
Let G be a finite group. Then the body of the multiplication table of G forms
a Latin square on the set G.

PROOF Consider the row of the table labeled by an element x of G. Let
z be an element of G. Now z appears in the row labeled x, namely in the
column labeled y, if and only if the equation (4.26) holds. By Corollary 4.54,
a solution y to this equation exists, so z indeed appears in the row labeled
x. Moreover, the solution y is unique, so in the row labeled x, the element z
only appears in the column labeled y, and not in any other column.

A similar argument shows that each element appears exactly once in each
column of the body of the multiplication table (Exercise 43).

Note that in Figure 3.3 (page 59), the body of the group table on the left
is a Latin square, while the body of the monoid table on the right is not.
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4.9 Exercises

1. Let S be the union (−∞,−1) ∪ (1,∞) of the real intervals (−∞,−1)
and (1,∞). In other words, S is the set of real numbers x with |x| > 1.
Show that S forms a semigroup under the usual multiplication of real
numbers.

2. Verify the claims of Example 4.5.

3. Pick three integers l, m, and n at random (for example nonzero digits
from the number of your telephone). See if there is a difference between
l − (m− n) and (l −m)− n.

4. (a) Show that the set of positive integers forms a semigroup under
addition.

(b) Show that for each positive integer e, the inequality e+x > x holds
for all positive integers x.

(c) Conclude that the set of positive integers does not form a monoid
under addition.

5. Verify the claims of Example 4.10.

6. Verify the claims of Example 4.11.

7. Show that the set P(n) (compare Example 4.11) forms a monoid under
the operation ∪ of set union:

X ∪ Y = {x | x in X or x in Y } .

What is the identity element of this monoid?

8. Let Pfin(N) denote the set of finite subsets of N.

(a) Show that Pfin(N) forms a monoid under set union.

(b) Show that Pfin(N) forms a semigroup under set intersection.

(c) Show that Pfin(N) does not form a monoid under set intersection.

9. Exhibit two real 2× 2 matrices X and Y such that XY 6= Y X.

10. Consider the set L(2,R) of linear functions from R1
2 to itself. (Compare

Exercise 2.9 in Chapter 2.) Show that L(2,R) forms a monoid under
the addition defined componentwise by

(LA + LB)(x) = LA(x) + LB(x)

for x in R1
2 and A, B in R2

2.
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11. Prove Proposition 4.15: Rewrite the proof of Proposition 2.23 in abstract
terms.

12. Show that
(
x−1

)−1 = x for each element of a group G.

13. Let X be a set. What is the group of units of the monoid XX of
functions?

14. What is the group of units of the monoid (N, +, 0) of Example 4.9?

15. Determine the group of units of the monoid A of affine functions (see
Exercise 13 in Chapter 2).

16. Let u1, u2, . . . , ur−1, ur be elements of a group G. Show that

(u1u2 . . . ur−1ur)−1 = u−1
r u−1

r−1 . . . u−1
2 u−1

1 .

17. Let a, b, and c be elements of a group (G, ·, e), with abc = e. Give a
careful proof that cab = e.

18. Prove Proposition 4.25:

(a) Show that X × Y is closed under componentwise multiplication.

(b) Show that the componentwise multiplication is associative.

19. Prove Propositions 4.28 and 4.30:

(a) Show that

(eX , eY ) ◦X×Y (x, y) = (x, y) = (x, y) ◦X×Y (eX , eY )

for each element (x, y) of X × Y .

(b) Show that

(x−1, y−1) ◦X×Y (x, y) = (eX , eY ) = (x, y) ◦X×Y (x−1, y−1)

for each element (x, y) of X × Y .

20. In the group R× R of Example 4.32, describe the identity element and
inverses.

21. Consider the set R2
2 of real 2× 2 matrices.

(a) Determine inverses, and the identity element, in the group given
by matrix addition.

(b) Determine the group of units within the monoid of matrices under
Hadamard multiplication.
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22. In the respective parts (a), (b), and (c) of Definition 4.34, verify that
SX forms a semigroup, monoid, and group under the componentwise
multiplication.

23. Let X be a set, and let S be a commutative semigroup. Show that the
power SX is commutative.

24. Show that the set Π2
2 of all 2× 2 row-stochastic matrices (as defined in

Example 4.41) forms a submonoid of the monoid R2
2 of all real 2 × 2

matrices under matrix multiplication.

25. A square matrix is said to be column-stochastic if its transpose is row-
stochastic. Show that the set of 2× 2 column-stochastic matrices forms
a monoid under matrix multiplication.

26. A square matrix is said to be doubly stochastic if it is both row- and
column-stochastic.

(a) Give an example of a nonidentity 2× 2 doubly stochastic matrix.

(b) Show that the set of all 2 × 2 doubly stochastic matrices forms a
monoid under matrix multiplication.

(c) Determine the group of units within the monoid of 2 × 2 doubly
stochastic matrices.

27. A 2× 2 matrix [
a b
c d

]

is said to be upper triangular if c = 0.

(a) Show that the set of upper triangular real 2 × 2 matrices forms a
monoid N under matrix multiplication.

(b) Determine the group of units N∗ of the monoid N .

28. Consider the set

K =
{ [

k k
k k

] ∣∣∣∣ k real, nonzero
}

of all “constant” nonzero 2× 2 real matrices.

(a) Show that K forms a subsemigroup of the semigroup of all 2 × 2
real matrices under matrix multiplication.

(b) Show that K does not form a submonoid of the monoid of all 2×2
real matrices under matrix multiplication.

(c) Show that K forms a group under matrix multiplication.
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29. Let H and K be subgroups of a group G. Show that the intersection
H ∩K of H and K (the set of elements of G common to both H and
K) is also a subgroup of G.

30. Let G be a group. For each element i of an “index set” I, let Hi be a
subgroup of G. Show that the intersection

⋂

i in I

Hi = {g | g in Hi for all i in I}

of the subgroups Hi is also a subgroup of G.

31. Let C(R) be the set of all continuous real-valued functions f : R → R.
Show that C(R) forms a subgroup of the group RR of all real-valued
functions with componentwise structure.

32. Let r be a positive integer. Show that the set Cr(R) of all real-valued
functions f : R→ R with a continuous r-th derivative f (r) forms a sub-
group of the group RR of all real-valued functions with componentwise
structure.

33. For a real number θ (an angle in radians), show that the matrix
[
cos θ − sin θ
sin θ cos θ

]

is orthogonal.

34. For real numbers θ and ϕ, show that the addition formulas for the cosine
and sine are given by equating respective components on both sides of
the product equation

[
cos θ − sin θ
sin θ cos θ

]
·
[
cos ϕ − sin ϕ
sin ϕ cos ϕ

]
=

[
cos(θ + ϕ) − sin(θ + ϕ)
sin(θ + ϕ) cos(θ + ϕ)

]

in the orthogonal group.

35. (a) Show that each subgroup of the group of integers under addition is
a subsemigroup of the semigroup of integers under multiplication.

(b) Exhibit an example of a subgroup of the group of real numbers
under addition which is not a subsemigroup of the semigroup of
real numbers under multiplication.

36. Let H be a subgroup of a group G. Show that two right cosets of H are
either equal or disjoint.

37. Let H be a subgroup of a finite group G. Show that the number of left
cosets of H in G is equal to the number of right cosets of H in G.
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38. Show that the group of even integers has index 2 in the group (Z, +, 0)
of integers under addition.

39. Let H and K be subgroups of a group G. Define a relation R on G by
g1 R g2 if and only if hg1k = g2 for some h in H and k in K. Show
that R is an equivalence relation on G. (The equivalence classes HgK
are known as double cosets.)

40. Let H be a subgroup of a group G. Let x and y be elements of G. Show
that the cosets Hx and Hy are equal if and only if xy−1 is an element
of H.

41. Prove Proposition 4.53(b).

42. Let y and z be given elements of a group G. Show that there is a unique
solution x in G to the equation x · y = z.

43. Complete the proof of Theorem 4.55 by showing that each group element
appears exactly once in each column of the body of the multiplication
table.

4.10 Study projects

1. Nim sums. The game of Nim (see Figure 4.3) is played with a small
collection of counters. The counters are arranged into several groups or
heaps. There are two players, who take turns to play. When it is your
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FIGURE 4.3: A Nim position with three heaps.

turn, you are allowed to remove counters from only one heap. You must
remove at least one counter. The player removing the last counter is
the winner.
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How can you win at Nim? The game is analyzed using bit strings and
the power group (Z/2, +)n introduced in Example 4.35. Consider the
position displayed in Figure 4.3. In the first heap, there are 5 counters,
101 or 0101 in binary. In the other two heaps, there are 8 = 1000 and
6 = 110 or 0110 counters respectively. Zeros are added as needed to
make the lengths of all the strings equal.

Now the Nim sum b +2 c of two natural numbers b and c is defined
by identifying natural numbers with their binary representations, and
taking the sum of these bit strings in (Z/2, +)n (for any positive integer
n with 2n > max(b, c)).

(a) Show that the Nim sum b +2 c of two natural numbers b and c
is independent of the number of zeros appended in front of their
binary representations.

(b) Show that the set of natural numbers forms a group (N, +2, 0)
under Nim sum.

(c) Compute the Nim sum 5 +2 8 +2 6.

(d) Show that you will not lose in Nim if after each move, you leave
the Nim sum of the sizes of the heaps at 0.

(e) Show that the unique winning move from the position in Figure 4.3
is to remove 5 counters from Heap 2.

2. The orthogonal group. Consider a 2× 2 orthogonal matrix

A =
[
a b
c d

]
.

(a) Show that the orthogonality condition AT A = I reduces to the
three equations

a2 + c2 = 1 (4.27)

b2 + d2 = 1 (4.28)
ab + cd = 0 . (4.29)

(b) Show that the solutions (a, b, c, d) to the simultaneous equations
(4.27) through (4.29) are of two types, (cos θ,− sin θ, sin θ, cos θ)
as in the picture on the left, or (cos θ, sin θ, sin θ,− cos θ) as in the
picture on the right:
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(c) Show that the set

SO2(R) =
{[

cos θ − sin θ
sin θ cos θ

] ∣∣∣∣ 0 ≤ θ < 2π

}

forms a subgroup of the orthogonal group. (The group SO2(R) is
called the special orthogonal group of dimension 2.)

(d) Show that the orthogonal group is the union of SO2(R) and the
coset

SO2(R)
[
1 0
0 −1

]
.

3. Dihedral groups. Consider an integer n > 2.

(a) Show that the set

Cn =
{[

cos(2rπ/n) − sin(2rπ/n)
sin(2rπ/n) cos(2rπ/n)

] ∣∣∣∣ 0 ≤ r < n

}

forms a commutative subgroup of the special orthogonal group.

(b) Show that the union

Dn = Cn ∪ Cn

[
1 0
0 −1

]

forms a noncommutative subgroup of the orthogonal group. (The
group Dn is called the dihedral group of degree n.)

(c) Consider the set

Pn =
{[

cos(2sπ/n)
sin(2sπ/n)

] ∣∣∣∣ 0 ≤ s < n

}
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of column vectors from R1
2. Using a column vector

[
x1

x2

]
to specify

the point (x1, x2) of the plane R2, show that the set Pn specifies
the points of a regular n-gon in the plane.
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P5

[
1
0

]

[
cos(2π/5)
sin(2π/5)

]

[
cos(8π/5)
sin(8π/5)

]

[
cos(4π/5)
sin(4π/5)

]

[
cos(6π/5)
sin(6π/5)

]

(d) For a matrix A in the dihedral group Dn, and for a column vector
p in Pn (a vertex of the n-gon), show that the matrix product

LA(p) = Ap

is again a vertex of the n-gon. Conclude that the dihedral group
Dn forms the full group of symmetries of the regular n-gon Pn.

4.11 Notes

Section 4.3

N.H. Abel was a Norwegian mathematician who lived from 1802 to 1829.

Section 4.4

R. Descartes was a French mathematician and philosopher who lived from
1596 to 1650. J.S. Hadamard was a French mathematician who lived from
1865 to 1963.

Section 4.7

J.L. Lagrange was a French mathematician who lived from 1736 to 1813.



Chapter 5

HOMOMORPHISMS

A study of sets inevitably leads to a study of functions between sets. Similarly,
a study of algebraic structures such as semigroups, monoids, or groups entails
a study of the functions that preserve the algebraic structure. These functions
are known as homomorphisms (literally “same shape”).

5.1 Homomorphisms

Consider the exponential function exp : R → R; x 7→ ex. By the law of
exponents,

exp(x + y) = ex+y = ex · ey = exp(x) · exp(y) . (5.1)

Now the domain of the exponential function is the semigroup (R, +) of real
numbers under addition. The codomain of the exponential function is the
semigroup (R, ·) of real numbers under multiplication. The equation (5.1)
says that we may either add two real numbers x and y in the domain, and
then map across to exp(x + y) in the codomain, or else map x and y across
individually to exp(x), exp(y) in the codomain, and then multiply these two
numbers in the codomain. Either way, we get the same answer.

DEFINITION 5.1 (Homomorphisms and isomorphisms of semi-
groups, monoids, and groups.)

(a) Let θ : (X, ◦) → (Y, ∗) be a function from a semigroup (X, ◦) to a
semigroup (Y, ∗). Then θ is said to be a semigroup homomorphism if

θ(x1 ◦ x2) = θ(x1) ∗ θ(x2)

for all x1, x2 in X.

(b) Let θ : (X, ◦, e) → (Y, ∗, f) be a function from a monoid (X, ◦, e) to a
monoid (Y, ∗, f). Then θ is said to be a monoid homomorphism if it is
a semigroup homomorphism θ : (X, ◦, ) → (Y, ∗) with θ(e) = f .

(c) Let θ : (X, ◦, e) → (Y, ∗, f) be a function from a group (X, ◦, e) to a
group (Y, ∗, f). Then θ is said to be a group homomorphism if it is a
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monoid homomorphism θ : (X, ◦, e) → (Y, ∗, f) with θ(x−1) = (θ(x))−1

for all x in X.

(d) Bijective semigroup, monoid, and group homomorphisms are described
respectively as semigroup, monoid, and group isomorphisms.

The relationship of isomorphism between semigroups, monoids, or groups
X and Y is often denoted by

X ∼= Y

— compare (2.25). The context should make clear what kind of isomorphism
is presented: of sets, semigroups, monoids, or groups.

Example 5.2 (The exponential function.)
The law of exponents (5.1) shows that exp : (R,+) → (R, ·) is a semigroup

homomorphism from the semigroup of real numbers under addition to the
semigroup of real numbers under multiplication. Furthermore, the equation

exp(0) = 1

shows that exp : (R,+, 0) → (R, ·, 1) is a monoid homomorphism from the
monoid of real numbers under addition to the monoid of real numbers under
multiplication.

Example 5.3 (Inclusion of a subgroup.)
Let H be a subgroup of a group G. Then the inclusion function

j : H ↪→ G; h 7→ h

is a group homomorphism.

Example 5.4 (Projections.)
Given sets X and Y , define the respective projections

π1 : X × Y → X; (x, y) 7→ x

and
π2 : X × Y → Y ; (x, y) 7→ y

to the first and second factors. If X and Y are semigroups, monoids, or groups,
then the projections are homomorphisms of semigroups, monoids, and groups
respectively.

PROPOSITION 5.5 (Semigroup homomorphisms between groups.)
Let θ : (X, ◦) → (Y, ∗) be a semigroup homomorphism between two groups

(X, ◦, e) and (Y, ∗, f). Then θ is a group homomorphism.
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PROOF Since θ is a semigroup homomorphism, the equation

θ(e) ∗ θ(e) = θ(e ◦ e) = θ(e)

holds in Y . However, since f is the identity element of Y , and θ(e) is an
element of Y , the identity property (4.5) in Y gives

θ(e) ∗ f = θ(e) .

It follows that θ(e) ∗ θ(e) = θ(e) ∗ f , so θ(e) = f by Corollary 4.54, and θ is a
monoid homomorphism.

Now for each element x of X, we have

θ(x) ∗ θ(x−1) = θ(x ◦ x−1) = θ(e) = f .

But θ(x) ∗ (θ(x))−1 = f , so Corollary 4.54 again gives θ(x−1) = (θ(x))−1,
making θ a group homomorphism.

In contrast with Proposition 5.5, a semigroup homomorphism between
monoids need not be a monoid homomorphism (compare Exercise 1).

THEOREM 5.6 (Monoid homomorphisms and groups of units.)
Let θ : (M, ◦, e) → (N, ∗, f) be a monoid homomorphism. Then θ restricts to
a group homomorphism θ∗ : M∗ → N∗ between the corresponding groups of
units.

PROOF Suppose that u lies in M∗, with u ◦ v = e = v ◦ u for some v in
M . Then

θ(u) ∗ θ(v) = θ(u ◦ v) = θ(e) = f = θ(v) ∗ θ(u) ,

so that θ(u) lies in N∗. The restriction

θ∗ : M∗ → N∗;u 7→ θ(u)

is a semigroup homomorphism between the respective groups of units. By
Proposition 5.5, it is then a group homomorphism.

Example 5.7 (Determinants.)
The determinant function

det : R2
2 → R;

[
a b
c d

]
7→ ad− bc (5.2)

is a monoid homomorphism from the monoid of 2 × 2 real matrices under
multiplication to the monoid of real numbers under multiplication (compare
Exercise 7). It restricts to a group homomorphism from GL(2,R) to the group
of nonzero real numbers under multiplication.
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A function f : X → Y between sets is fully described by its graph, the
subset

{(x, f(x)) | x in X} (5.3)

of X × Y . Homomorphisms may then be recognized by their graphs.

PROPOSITION 5.8 (The graph of a homomorphism.)
Let (X, ◦) and (Y, ∗) be semigroups. Then a function f : X → Y is a

semigroup homomorphism if and only if the graph (5.3) is a subsemigroup of
the direct product semigroup X × Y .

PROOF If f is a semigroup homomorphism, and x1, x2 are elements of
X, then

(x1, f(x1))(x2, f(x2)) = (x1 ◦ x2, f(x1) ∗ f(x2)) = (x1 ◦ x2, f(x1 ◦ x2)) ,

so the graph is closed under multiplication. Conversely, suppose the graph
is closed under multiplication. Then for elements x1 and x2 of X, the graph
contains both (x1 ◦ x2, f(x1 ◦ x2)) and

(x1, f(x1))(x2, f(x2)) = (x1 ◦ x2, f(x1) ∗ f(x2)) .

However, since f is a function, there is a unique element (x, f(x)) of the graph
for each element x of X. By this uniqueness for the element x1 ◦ x2 of X, we
have f(x1 ◦ x2) = f(x1) ∗ f(x2), so that f is a semigroup homomorphism.

COROLLARY 5.9
Let (X, ◦, e) and (Y, ∗, f) be monoids. Then a function f : X → Y is a

monoid homomorphism if and only if the graph (5.3) is a submonoid of the
direct product monoid X × Y .

5.2 Normal subgroups

Let f : X → Y be a function. The image f(X) = {f(x) | x in X} is a
subset of the codomain Y . If f is a homomorphism of semigroups, monoids,
or groups, the image will carry the corresponding algebra structure.

PROPOSITION 5.10 (Images of homomorphisms.)
Let f : (X, ·) → (Y, ·) be a semigroup homomorphism.

(a) The image f(X) is a subsemigroup of Y .
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(b) If f : (X, ·, eX) → (Y, ·, eY ) is a monoid homomorphism, then f(X) is
a submonoid of Y .

(c) If f : (X, ·, eX) → (Y, ·, eY ) is a group homomorphism, then f(X) is a
subgroup of Y .

PROOF (a): For elements x and x′ of X, we have f(x)f(x′) = f(xx′),
showing that f(X) is closed under multiplication.

(b): In this case eY = f(eX) lies in f(X).

(c): For an element x of X, we have f(x)−1 = f(x−1), so that f(X) is closed
under inversion.

Now consider a group homomorphism f : X → Y from a group (X, ·, eX)
to a group (Y, ·, eY ). As a function f : X → Y from the domain set X to the
codomain set Y , the homomorphism f : X → Y specifies a kernel relation
ker f on X, with

x ker f x′ if and only if f(x) = f(x′)

(3.3). The equivalence class [eX ]ker f of the identity element eX of X is the
inverse image

f−1{f(eX)}
— compare (3.5) and Exercise 3 of Chapter 3. Since f : X → Y is a group
homomorphism, this equivalence class may be expressed in the form

[eX ]ker f = f−1{eY } (5.4)

as the inverse image of the identity element eY of the codomain group Y .

PROPOSITION 5.11 (Kernel class of the identity.)
Let f : (X, ·, eX) → (Y, ·, eY ) be a group homomorphism.

(a) The equivalence class (5.4) forms a subgroup N of X.

(b) For all x in X and n in N ,

xnx−1 lies in N . (5.5)

PROOF (a): First note that N is nonempty, since it contains the element
eX . Then for elements n and n′ of N , the homomorphic properties of f give

f(n′n−1) = f(n′)f(n−1) = f(n′)f(n)−1 = eY e−1
Y = eY ,

so that N is a subgroup of X by Proposition 4.43.
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(b): The homomorphic properties of f give

f(xnx−1) = f(x)f(n)f(x−1) = f(x)eY f(x)−1 = f(x)f(x)−1 = eY ,

so that xnx−1 lies in N as required.

DEFINITION 5.12 (Normal subgroups, group kernels.) Let X be
a group.

(a) A subgroup N of X satisfying the additional closure property (5.5) is
called a normal subgroup of X.

(b) For a group homomorphism f : X → Y with domain X, the normal
subgroup f−1{eY } of X is called the (group) kernel Ker f of f .

Note the distinction between the kernel relation ker f (lower case “k”) and
the kernel subgroup Ker f (upper case “K”).

Example 5.13 (The Klein 4-group.)
The Klein 4-group V4 is a normal subgroup of the symmetric group S4.

Indeed, the nonidentity elements of V4 consist of all 3 possible products α◦α′

with disjoint 2-cycles α and α′. Then for any permutation β in S4, we have

β ◦ (α ◦ α′) ◦ β−1 = (β ◦ α ◦ β−1) ◦ (β ◦ α′ ◦ β−1) . (5.6)

By Exercise 38 in Chapter 2, the two factors on the right-hand side of (5.6)
are again disjoint 2-cycles. Thus V4 satisfies the additional closure property
(5.5). On the other hand, {(0), (0 1)} is a subgroup of S4 which is not normal
(compare Exercise 14).

The easy proof of the following result is left as Exercise 15.

PROPOSITION 5.14 (Normal subgroups of abelian groups.)
In an abelian group G, every subgroup is normal.

Consider a group homomorphism f : (G, ·, eX) → (Y, ·, eY ). According to
Definition 5.12(b), the equivalence class [eX ]ker f of the identity element eX

of X under the kernel relation ker f is the group kernel Ker f . More generally,
each equivalence class under the kernel relation ker f is a coset of the group
kernel Ker f .

PROPOSITION 5.15 (Kernel classes are cosets.)
Let f : X → Y be a group homomorphism, with kernel relation ker f and

group kernel N = Ker f . Let x be an element of X. Then the equivalence
class [x]ker f under the kernel relation ker f is the coset Nx.
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PROOF As usual, in proving the equality of the two sets [x]ker f and Nx,
we will show that each is contained in the other.

First, consider an element y of the equivalence class [x]ker f , so f(x) = f(y).
Then by the homomorphic property of f ,

f(yx−1) = f(y)f(x)−1 = eY ,

so yx−1 is some member n of N = f−1{eY }. As yx−1 = n, we obtain y as
the member nx of the coset Nx.

Conversely, consider a member nx of the coset Nx, with n in N . Then

f(nx) = f(n)f(x) = eY f(x) = f(x) ,

whence nx ker f x, and nx lies in [x]ker f by the symmetry of ker f .

Proposition 5.15 allows us to recognize the set Xker f of equivalence classes
as the set

X/N = {Nx | x in X}
of right cosets of the normal subgroup N = Ker f , and to recognize the
surjection

s : X → Xker f ; x 7→ [x]ker f

(3.12) from the First Isomorphism Theorem as the map

s : X → X/N ; x 7→ Nx .

In the next section, it will be shown that each normal subgroup N of a group
X yields a group structure on its set X/N of cosets.

5.3 Quotients

For subsets A and B of a group (X, ·, eX), consider the multiplication

A ·B = {ab | a in A, b in B} (5.7)

— compare (4.23).

PROPOSITION 5.16 (Recognizing subgroups.)
Let X be a group.

(a) The multiplication (5.7) is associative.

(b) A nonempty subset H of X is a subgroup if and only if H ·H = H and
H−1 = H.
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PROOF (a): Let A, B, and C be subsets of X. Then

A · (B · C) = {a(bc) | a in A, b in B, c in C}
= {(ab)c) | a in A, b in B, c in C} = (A ·B) · C .

(b): If nonempty H satisfies the two equalities, then x and y in H imply xy−1

lies in H ·H−1 = H ·H = H, so H is a subgroup by Proposition 4.43.
Now suppose that H is a subgroup. Then H ·H ⊆ H by the closure under

multiplication. Conversely, each element h of H can be written as eh in H ·H.
Also H−1 ⊆ H since H is closed under inversion. On the other hand, each
element h of H can be written as the element (h−1)−1 of H−1.

PROPOSITION 5.17 (Cosets of normal subgroups.)
Let N be a normal subgroup of a group X. Then the set

X/N = {Nx | x in X}
of right cosets is a group (X/N, ·, N) under the multiplication (5.7), with

(Nx)−1 = Nx−1 (5.8)

for x in X.

PROOF First note that N = xNx−1 for any element x of X. Certainly

xNx−1 ⊆ N

by the closure property (5.5) of N . Conversely, if n lies in N , then so does
n′ = xnx−1. Thus n = x−1(xnx−1)x = x−1n′x = x−1n′(x−1)−1 lies in
x−1Nx by the closure property (5.5).

Now we have

Nx ·Ny = N · xNx−1 · xy = N ·Nxy = Nxy , (5.9)

so X/N is closed under the associative multiplication of cosets. For any x in
X, we have N ·Nx = (N ·N)x = Nx and

Nx ·N = N · xNx−1 · x = N ·Nx = Nx ,

so that N is an identity element. Finally

Nx ·Nx−1 = N · xNx−1 = N ·N = N

and
Nx−1 ·Nx = N · (x−1)N(x−1)−1 = N ·N = N ,

so that Nx−1 is the inverse of the coset Nx.
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By Proposition 5.11, group kernels are normal subgroups. The converse is
now seen to be true: normal subgroups are group kernels.

COROLLARY 5.18

Let N be a normal subgroup of a group X. Then there is a homomorphism

X → X/N ; x 7→ Nx

with group kernel N .

PROOF By (5.9), the map x 7→ Nx is a group homomorphism. Its group
kernel is {x | Nx = N} = N .

DEFINITION 5.19 (Quotient groups.) Let N be a normal subgroup
of a group X. Then the group

(X/N, ·, N)

of Proposition 5.17 is called the quotient of X by the normal subgroup N .

Example 5.20 (Modular arithmetic.)
Let d be a positive integer. In the group (Z, +, 0) of integers under addition,
the subgroup dZ of multiples of d is normal. The quotient group Z/dZ is the
set Zmod d, with the addition

(dZ+ a) + (dZ+ b) = dZ+ (a + b)

given in (3.21). Inverses are given by the negation

−(dZ+ a) = dZ− a ,

while the identity element is the subgroup dZ.
In fact, the set Z/dZ carries more structure, the multiplication

(dZ+ a) · (dZ+ b) = dZ+ (a · b)

given in (3.22). Under this multiplication, the set Z/dZ becomes a monoid,
with identity element dZ + 1. Furthermore, the set Z/d inherits the group
and monoid structure from Z/dZ = Zmod d via the isomorphism (3.18). (See
Exercises 5 and 23.)
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5.4 The First Isomorphism Theorem for Groups

The results of the preceding sections may be summarized to show how a
group homomorphism factorizes under a strengthened version of the First
Isomorphism Theorem for Sets (Theorem 3.11, page 57).

THEOREM 5.21 (First Isomorphism Theorem for Groups.)
Let f : (X, ·, eX) → (Y, ·, eY ) be a group homomorphism.

(a) The group kernel N = f−1{eY } is a normal subgroup of the domain
group X.

(b) The image f(X) is a subgroup of the codomain group Y .

(c) In the factorization
f = j ◦ b ◦ s

given by the First Isomorphism Theorem for Sets, the surjection s may
be taken as the surjective homomorphism

s : X → X/N ;x 7→ Nx

of Corollary 5.18, the bijection b is the well-defined group isomorphism

b : X/N → f(X); Nx 7→ f(x)

from the quotient X/N to the image f(X), and the injection j is the
injective group homomorphism

j : f(X) ↪→ Y ; f(x) 7→ f(x)

of Example 5.3.

If the domain of the group homomorphism in the First Isomorphism Theo-
rem is finite, then the bijection b may be used to count the size of the image.

COROLLARY 5.22

Let f : X → Y be a group homomorphism with group kernel N and finite
domain X. Then the size |f(X)| of the image of f is the index

|X/N | = |X|/|N |

of the subgroup N of X.
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Example 5.23 (The special linear group.)
Consider the group homomorphism

det : GL(2,R) → R∗;
[
a b
c d

]
7→ ad− bc

(compare Example 5.7 and Exercise 7). The group kernel is the set SL(2,R)
of 2 × 2 real matrices of determinant 1. This group SL(2,R) is called the
(real) special linear group of dimension 2. The First Isomorphism Theorem
for Groups exhibits the isomorphism

GL(2,R)/SL(2,R) ∼= R∗

from the quotient group to the group of nonzero real numbers under multi-
plication.

An important application of the First Isomorphism Theorem for Groups is
the classical Chinese Remainder Theorem.

THEOREM 5.24 (Chinese Remainder Theorem.)
Let a and b be coprime positive integers. Then there are isomorphisms

Z/abZ ∼= Z/aZ× Z/bZ

of sets, groups under addition, and monoids under multiplication.

PROOF Consider the map

p : Z/abZ→ Z/aZ× Z/bZ ;
abZ+ x 7→ (aZ+ x, bZ+ x) .

It is clearly well-defined, since

ab | (x− x′) implies a | (x− x′) and b | (x− x′) .

It is certainly a (semi)group and monoid homomorphism. For an element
abZ + x of the group kernel Ker p, the representative integer x is a multiple
of both a and b. Since a and b are coprime, their lowest common multiple is
ab (compare Exercise 43 in Chapter 1). Thus ab | x, and the group kernel
Ker p is trivial. It follows that the group homomorphism is injective, since
the classes of the kernel relation ker p are the cosets of the subgroup Ker p.
Since the domain and codomain have the same finite number of elements,
Corollary 5.22 shows that the map p is surjective.
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5.5 The Law of Exponents

Let x be an element of a monoid (M, ·, e). Then for natural numbers n, the
powers xn are defined recursively by

x0 = e and xn+1 = xn · x (5.10)

(compare Section 2.4 for powers in a semigroup or monoid of functions).

• In the monoid (R, ·, 1) of real numbers under multiplication, the notation
(5.10) agrees with the usual power notation for real numbers x.

• In the monoid (N, +, 0) of natural numbers under addition, the power
notation xn for a natural number x translates to the multiple notation
nx.

Generally, for a (commutative) monoid (M, +, 0) written using additive
notation, the recursive definition (5.10) of powers translates to a recursive
definition

0x = 0 and (n + 1)x = nx + x

of multiples.
For an element x of a monoid (M, ·, e), and natural numbers m, n, the Law

of Exponents
xm+n = xm · xn (5.11)

may be proved by induction on n (Exercise 28). The Law of Exponents
underlies the following theorem, which shows the special role played by the
monoid (N, +, 0) of natural numbers under addition, and the number 1 as an
element of that monoid.

THEOREM 5.25 (Universality of natural numbers.)
Let x be an element of a monoid (M, ·, e). Then there is a unique monoid

homomorphism
f : (N,+, 0) → (M, ·, e); n 7→ xn (5.12)

with f(1) = x.

PROOF The map f of (5.12) is a monoid homomorphism, since

f(0) = x0 = e

by definition, and

f(m + n) = xm+n = xm · xn = f(m) · f(n)
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for natural numbers m and n by the Law of Exponents (5.11). Now suppose
that ϕ : (N, +, 0) → (M, ·, e) is a monoid homomorphism with ϕ(1) = x.
For natural numbers n, the equation ϕ(n) = f(n) follows by induction on
n. Certainly ϕ(0) = e = f(0), since ϕ is a monoid homomorphism. Then if
ϕ(n) = f(n), we have

ϕ(n + 1) = ϕ(n) · ϕ(1) = ϕ(n) · x = f(n) · x = xn · x = xn+1 = f(n + 1) ,

the first equation holding since ϕ is a semigroup homomorphism.

Now let x be an element of a group (G, ·, e). For each positive integer n,
define

x−n = (x−1)n .

The Law of Exponents (5.11) for monoids may then be extended to a Law of
Exponents

xm+n = xm · xn (5.13)

for groups, holding for all integers m and n (Exercise 30). The analogue of
Theorem 5.25 holds (Exercise 31). It points out the special role played by the
group (Z, +, 0) of integers under addition, and the element 1 of that group.

THEOREM 5.26 (Universality of integers.)
Suppose that x is an element of a group (G, ·, e). Then there is a unique

group homomorphism

expx : (Z, +, 0) → (G, ·, e); n 7→ xn (5.14)

with expx(1) = x.

Example 5.27 (Exponentiation.)
Consider the element e of the group (R∗, ·, 1) of nonzero real numbers under
multiplication. Then

expe(n) = en

for each integer n. For the element 2 of R∗, we have exp2(n) = 2n for each
integer n. Thus the uniquely specified group homomorphism (5.14) may be
considered as an “exponentiation to base x” in the group G.

In Theorem 5.26, the group kernel Ker(expx) of the homomorphism expx

is a subgroup of the group (Z, +, 0) of integers. By Theorem 4.46 (page 81),
the group Ker(expx) is the set of multiples of a natural number dx.

DEFINITION 5.28 (Cyclic group generated, order of element.)
Let x be an element of a group (G, ·, e).
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(a) The image 〈x〉 of the group homomorphism expx in (5.14) is called the
(cyclic) subgroup of G generated by x.

(b) If dx = 0, the element x is said to be of infinite order.

(c) If dx is a positive integer, the element x is said to be of finite order dx.

Note that part (b) of the First Isomorphism Theorem for Groups, applied
to the group homomorphism expx : Z→ G, confirms that the image

〈x〉 = {. . . , x−2, x−1, x0 = e, x1 = x, x2, x3, . . . }
of expx, the set of all powers of the element x, really is a subgroup of G.

Two cases arise:
• If x has infinite order, the group kernel of expx is trivial. Thus expx

is injective, and the powers

. . . , x−2, x−1, x0 = e, x1 = x, x2, x3, . . .

of x are all distinct. Part (c) of the First Isomorphism Theorem for Groups,
applied to the group homomorphism expx : Z → G, then yields the group
isomorphism

b : Z→ 〈x〉; n 7→ xn

between the infinite cyclic group 〈x〉 and the group of integers (Z, +, 0) under
addition. In general, any group C∞ isomorphic to the group of integers is
described as an infinite cyclic group.
• If x has finite order dx, the bijection b in the First Isomorphism

Theorem for Groups shows that x has precisely dx distinct powers

x0 = e, x1 = x, x2, x3, . . . , xdx−1 .

Since the classes of the kernel relation ker(expx) are the cosets of the subgroup
dxZ, two powers xm and xn of x are equal if and only if the difference m− n
is a multiple of the order dx. In this case, we may also consider the indices n
in powers xn of x as integers modulo dx. In other words, when x has finite
order d, the bijection b in the First Isomorphism Theorem for Groups yields
the group isomorphism b : Z/d → 〈x〉;n 7→ xn between the cyclic group 〈x〉
of size d and the group of integers (Z/d, +, 0) modulo d under addition.

In general, any group Cd isomorphic to the group of integers modulo d under
addition is described as a cyclic group of finite order d. This is consistent with
the nomenclature of Example 2.30 (page 38) — compare Exercise 34.

REMARK 5.29 Let x be an element of a group G. Whether x has finite
or infinite order, this order is just the size (or cardinality)

|〈x〉| (5.15)

of the cyclic group 〈x〉 generated by x. It is convenient to use (5.15) as a
standard notation for the order of a group element x.
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5.6 Cayley’s Theorem

Abstract groups were introduced as a generalization of the concept of a
group of permutations. It will now be shown that the generalization has not
strayed too far:

Every group is isomorphic to a group of permutations.

To put groups in context, we begin by examining semigroups.
Let (S, ·) be a semigroup. Then for each element s of S, we define the left

multiplication by s to be the map

λs : S → S; x 7→ s · x . (5.16)

Example 5.30 (Real shifts.)
Let (R.+) be the semigroup of real numbers under addition. Then for each

real number r, the left multiplication λr by r is the shift σr of Example 2.5
(page 30).

Example 5.31 (Cycles.)
Let n be a positive integer. Let (Z/n, +) be the semigroup of integers modulo
n under addition. Then λ1 is the cycle

(
0 1 2 . . . (n− 1)

)

from the cyclic group Cn (Example 2.30, page 38).

PROPOSITION 5.32
Let (S, ·) be a semigroup. Consider the semigroup (SS , ◦) of all functions

from the set S to itself, with the operation of function composition. Then the
map

Λ : (S, ·) → (SS , ◦); s 7→ λs

is a semigroup homomorphism.

PROOF For elements s, t, and x of S, the associative law yields

(λs ◦ λt)(x) = λs(λt(x)) = λs(t · x) = s · (t · x) = (s · t) · x = λs·t(x) .

Thus the composite map λs ◦ λt is equal to the single map λs·t. Rewriting in
terms of Λ, we obtain Λ(s) ◦ Λ(t) = Λ(s · t), showing that Λ is a semigroup
homomorphism.
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Example 5.33
Let X be a set. Define an operation · on X by

x · y = y

for all x, y in X. This operation is associative, since

x · (y · z) = x = x · y = (x · y) · z

for x, y, z in X. In the semigroup (X, ·), we have λx = idX for all x in X.
The map Λ of Proposition 5.32 becomes the constant map

Λ : x 7→ idX

in this case.

For groups, the collapse observed in Example 5.33 cannot happen. In fact,
we obtain the desired isomorphism of each abstract group with a group of
permutations.

THEOREM 5.34 (Cayley’s Theorem.)
Let (G, ·, e) be a group.

(a) The semigroup homomorphism

Λ : (G, ·) → (GG, ◦); x 7→ λx

is injective.

(b) The image of Λ is a group of permutations on the set G.

(c) The abstract group G is isomorphic to the group Λ(G) of permutations
of the set G.

PROOF (a): Suppose λx = λy for elements x and y of G. Then

x = x · e = λx(e) = λy(e) = y · e = y .

(b): For each element x of G, the map λx is invertible, with two-sided inverse
λx−1 . Indeed, for each element g of G, we have

λx ◦ λx−1(g) = x · x−1 · g = g = idX(g) ,

so that λx ◦λx−1 = idX . Considering x−1 in place of x yields λx−1 ◦λx = idX .

(c): The map (G, ·, e) → (Λ(G), ◦, idX);x 7→ λx is a bijective semigroup
homomorphism between groups. As such, it is a group isomorphism.
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Example 5.35 (Position vectors and translation vectors.)
Consider the group R2 of 2-dimensional real vectors (Example 4.32, page 75).
An element (x1, x2) of R2 represents a position vector . Its image λ(x1,x2) in
Λ(R2) under the isomorphism of Theorem 5.34(c) becomes the corresponding
translation vector

λ(x1,x2) : R2 → R2; (a1, a2) 7→ (x1 + a1, x2 + a2)

(Figure 5.1). Thus according to Cayley’s Theorem, the group of position
vectors under addition is isomorphic to the group of translation vectors under
addition.
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FIGURE 5.1: Position vectors and translation vectors.
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5.7 Exercises

1. Define θ : P(1) → P(2); X 7→ X (compare Example 4.11 and Exercise 6
in Chapter 4).

(a) Show that θ : (P(1),∩) → (P(2),∩) is a semigroup homomorphism.

(b) Show that θ is not a monoid homomorphism.

2. Show that the group
(
R4, +, (0, 0, 0, 0)

)
of 4-dimensional real vectors is

isomorphic to the group

(
R2

2,+,

[
0 0
0 0

] )

of real 2× 2 matrices under addition.

3. Show that the group ΣR of shifts on R (compare Example 2.28, page
37) is isomorphic to the group (R, +, 0) of real numbers under addition.

4. Let f : G → H and g : H → K be semigroup homomorphisms. Show
that the composite g ◦ f : G → K is also a semigroup homomorphism.

5. Let θ : X → Y be a bijection from the set X to the set Y .

(a) If X carries a semigroup structure (X, ◦), show that there is a
unique way of defining an associative multiplication ∗ on Y to yield
a semigroup isomorphism θ : (X, ◦) → (Y, ∗).

(b) Suppose further that (X, ◦, e) is a monoid. Show that (Y, ∗, θ(e))
is a monoid.

(c) Suppose further that (X, ◦, e) is a group. Show that (Y, ∗, θ(e)) is
a group.

In (a), (b), and (c), we say that the set Y inherits the semigroup,
monoid, or group structure from X via θ.

6. Show that the group
(
(Z/2)2, +, 00

)
of length 2 bit strings (compare

Example 4.35, page 78) is isomorphic to the Klein four-group V4.

7. For real numbers a, b, c, d, a′, b′, c′, d′, verify the identity

(ad− bc)(a′d′ − b′c′) = (aa′ + bc′)(cb′ + dd′)− (ab′ + bd′)(ca′ + dc′) .

8. Define the trace function

tr : R2
2 → R;

[
a b
c d

]
7→ a + d (5.17)
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from the group R2
2 of 2× 2 real matrices under componentwise addition

(4.17) to the group of real numbers under addition. Show that the trace
function is a group homomorphism.

9. Prove Corollary 5.9.

10. Let X and Y be groups. Show that a function f : X → Y is a group
homomorphism if and only if the graph of f is a subgroup of the direct
product group X × Y .

11. Let n be a positive integer. Show that there is a group homomorphism

ρ : Cn → GL(2,R)

with

ρ
((

0 1 2 . . . (n− 2) (n− 1)
)r

)
=

[
cos(2rπ/n) − sin(2rπ/n)
sin(2rπ/n) cos(2rπ/n)

]

for 1 ≤ r ≤ n. (A homomorphism ρ from a group G to a group of
matrices is known as a matrix representation of the group G.)

12. Show that there is an injective monoid homomorphism from the monoid
A of affine functions to the monoid R2

2 of real 2 × 2 matrices under
multiplication, given by mapping the function

f : R→ R;x 7→ m · x + c

to the matrix [
m c
0 1

]
.

13. Show that the injective monoid homomorphism of Exercise 12 restricts
to a matrix representation ρ of the group Aff(R) of affine functions
(compare Exercise 45 in Chapter 2).

14. (a) Show that {(0), (0 1)} is a subgroup of the symmetric group S3.

(b) Show that {(0), (0 1)} is not a normal subgroup of S3.

15. Prove Proposition 5.14.

16. Let N be a subgroup of a group G. Let x and y be elements of G. Show
that the cosets Nx and Ny are equal if and only if xy−1 is an element
of N .

17. Show that a subgroup N of a group G is normal if and only if each right
coset Nx of N with an element x of G is equal to the left coset xN .

18. Show that a subgroup N of a group G is normal if and only if each right
coset Nx of N with an element x of G is equal to the left coset yN with
some element y of G.
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19. Give an example of a group G, a subgroup H, and an element x of G
such that the right coset Hx and left coset xH are distinct subsets of
G.

20. Let M and N be normal subgroups of a group G. Show that MN is
also a normal subgroup of G.

21. For a normal subgroup N of a group G, the equation (5.8) defines the
inverse (Nx)−1 of the coset Nx in the quotient group G/N . Show that
the equation is also consistent with a different interpretation of the left-
hand side, namely as the set

(Nx)−1 = {(nx)−1 | n in N}

of inverses (in G) of elements of the coset Nx.

22. Let f : (X, ·, eX) → (Y, ·, eY ) be a group homomorphism. Show that
f is injective if and only if Ker f = {eX}. (Compare Exercise 4 in
Chapter 3.)

23. Verify the claims of Example 5.20.

24. (a) Show that the intersection

SO2(R) = SL(2,R) ∩O2(R)

is a normal subgroup of the group O2(R) of orthogonal matrices.
(Compare Study Project 2 in Chapter 4.)

(b) Show that there is an isomorphism

O2(R)/SO2(R) ∼= {±1}

from the quotient group to the group of real numbers {±1} under
multiplication.

[Hint: Use the First Isomorphism Theorem for Groups to obtain both
(a) and (b) directly.]

25. Let M and N be normal subgroups of a group G.

(a) Show that the map

θ : G → G/M ×G/N ; x 7→ (Mx, Nx)

is a group homomorphism.

(b) Show that the group kernel of θ is the intersection M ∩ N of the
normal subgroups M and N .

(c) Conclude that M ∩N is a normal subgroup of G.
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26. Let G be a group. Consider the subset

Ĝ = {(g, g) | g in G}

of G×G, the so-called diagonal .

(a) Show that Ĝ is a subgroup of G × G. (Hint: If you have done
Exercise 10, you may apply it by noting that the diagonal is the
graph of the group homomorphism idG.)

(b) Show that G is commutative if and only if Ĝ is a normal subgroup
of G×G.

27. Find a solution x to the simultaneous congruences

x ≡ 2 mod 7 ,

x ≡ 7 mod 10 .

28. Prove the Law of Exponents (5.11) for an element x of a monoid (M, ·, e).
29. Show that in additive notation, the Law of Exponents takes the form

(m + n)x = mx + nx

of a right distributive law .

30. Prove the Law of Exponents (5.13) for an element x of a group (G, ·, e).
(Hint: Beyond the monoid version, the additional cases to verify are
when one or both of m, n is negative.)

31. Prove Theorem 5.26.

32. Let d be a positive integer. Show that the order of dZ+ 1 in Z/dZ is d.

33. Suppose that m and n are coprime positive integers. Show that there is
a group isomorphism

Cmn
∼= Cm × Cn .

34. Consider a cycle
α = (x1 x2 x3 . . . xa)

of length a in the symmetric group Sn. Show that α has order a.

35. Let r be a positive integer. Show that the order of the matrix
[
cos(2π/r) − sin(2π/r)
sin(2π/r) cos(2π/r)

]

in GL(2,R) is r.
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36. Let x be an element of a finite group G of size n. Applying Lagrange’s
Theorem to the subgroup 〈x〉, show that the order of x is a divisor of n.

37. Let x be an element of finite order in a group G. Show that the order
of each power of x is a divisor of the order of x.

38. Let x be an element of a group G. Show that the order of x−1 is the
order of x.

39. Let x be an element of odd finite order in a group G. Show that x2 has
the same order as x.

40. In the affine group Aff(R), determine precisely which elements have
finite order. (Hint: You may wish to use the matrix representation ρ
from Exercise 13.)

41. Let f : G → H be a group homomorphism with finite domain. For each
element x of G, show that the order of f(x) is finite, and a divisor of
the order of x.

42. In a group G, consider elements x and y of coprime finite orders a and
b. Suppose that xy = yx. Show that there is a group isomorphism

Z/a × Z/b → 〈xy〉; (r, s) 7→ xrys .

43. In the symmetric group Sn, consider disjoint cycles α and β of respective
lengths a and b, with a and b coprime. Show that α ◦ β has order ab.

44. Show that every monoid is isomorphic to a monoid of functions.

45. Let X and Y be isomorphic sets.

(a) Show that the monoids XX and Y Y are isomorphic. (Compare
Example 2.2, page 29.)

(b) Show that the symmetric groups X! and Y ! are isomorphic.

5.8 Study projects

1. Error-correcting codes. Storing information for future retrieval, and
transmitting information from one location to another, are two basic
tasks of information technology. These tasks are complicated by the
occurrence of errors. Information storage media are subject to damage
and deterioration, while communication channels are subject to noise
and interference. Error-correcting codes are designed to compensate
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for the effects of errors that are not too serious, enabling the original
information to be recovered. (They are not directly related to secret
codes as discussed in Section 2.9.)

The simplest piece of information is a single yes/no dichotomy, a binary
digit or bit taking the value 1 or 0 (page 59). It could represent, say, the
verdict of a jury in a criminal trial: “Guilty” or “Not guilty.” If an error
occurs, it will change the bit from 1 to 0 or vice versa. The information
in the bit will be lost completely. To protect the information from errors
changing a single bit, redundancy is added. The single information bit
1 is encoded as the bit string 111, while 0 is encoded as 000. The full
set of encoded messages is the code

C = {000, 111} . (5.18)

Now if an error changes a bit, say changes 111 to 011, the original
information bit 1 may be recovered as the commonest bit in the string
011 (“majority vote”). The price paid for this robustness is a tripling
in the space needed to record the information (3 bits instead of 1), or
the time taken to transmit it.

Groups play a key role in the design of coding schemes. Consider the
group

(
(Z/2)3, +, 000

)
of bit strings of length 3 (Example 4.35, page

78). First, confirm that the code C is a subgroup of this group. Now
changing the first bit from the right in a bit string of length 3 means
adding the error 001, thus

111 + 001 = 110 .

There are three possible single-bit errors:

e1 = 001 , e2 = 010 , e3 = 100 ,

labeled by the error location, counting from the right. For completeness,
the zero “error” is

e0 = 000 .

Adding this “error” means no change to the bit string. The full set of
errors is

E = {e0 = 000 , e1 = 001 , e2 = 010 , e3 = 100} .

Although E is a subset of the set (Z/2)3 of all bit strings of length 3, it
is not a subgroup of

(
(Z/2)3,+, 000

)
. (Why not?)

However, there is a bijection

θ :(Z/2)2 → E;
00 7→ e00 = 000 , 01 7→ e01 = 001 , 10 7→ e10 = 010 , 11 7→ e11 = 100
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taking a bit string of length 2, the binary representation of a number
0 ≤ i < 22, to the corresponding error ei. According to Exercise 5(c),
this means that the set E inherits a group structure (E, ∗, 000) making
θ a group isomorphism. Show that the multiplication table of the error
set E under ∗ is as given in Figure 5.2.

∗ 000 001 010 100

000 000 001 010 100

001 001 000 100 010

010 010 100 000 001

100 100 010 001 000

FIGURE 5.2: Length 3 error set E under ∗.

The code (5.18) is recovered from the set of errors as:

000 = e00 + e01 + e00 ∗ e01 = 000 + 001 + 000 ∗ 001 = 000
111 = e01 + e10 + e01 ∗ e10 = 001 + 010 + 001 ∗ 010 = 111 .

Further, show that:

(a) A group homomorphism

s :
(
(Z/2)3, +, 000

) → (E, ∗, 000) (5.19)

is uniquely defined by ei 7→ ei for 0 < i < 4. [The homomorphism
(5.19) is known as the syndrome.]

(b) The code C is the group kernel of the syndrome. For example,

s(111) = s(e1 + e2 + e3) = e1 ∗ e2 ∗ e3 = 000 .

(c) When a bit string x is received, the single error that is assumed to
have occurred is s(x). For example, if x = 101 is received, the most
probable single error is s(101) = s(e1 + e3) = e1 ∗ e3 = e2 = 010 .
The word x = 101 is decoded as x + s(x) = 101 + 010 = 111 .

2. Hamming codes. For a positive integer r, define l = 2r − 1. The
integer r is known as the redundancy , and the integer l is known as the
channel length. The set (Z/2)l of bit strings of length l is known as the
channel . The errors are defined to be e0, the length l string of zeros, and
ei for 1 ≤ i ≤ l as the length l bit string with zeros everywhere except for
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a 1 in the i-th position counting from the right. (This notation extends
the case r = 2 discussed in Study Project 1.) Usually, we consider the
indices 0 ≤ i < 2r as being expressed in binary notation, as bit strings
of length r.

(a) Show that the error set

E = {ei | 0 ≤ i < 2r}

is not a subgroup of
(
(Z/2)l,+, 0

)
, unless r = 1.

(b) Show that E inherits a group structure (E, ∗, e0) from the bijection

θ : (Z/2)r → E; i 7→ ei .

(c) Show that ei ∗ ej = ek, where k is the Nim sum of i and j —
compare Study Project 1 in Chapter 4.

(d) Show that a group homomorphism

s :
(
(Z/2)l,+, e0

) → (E, ∗, e0) (5.20)

is uniquely defined by ei 7→ ei for 0 < i ≤ l. The homomorphism
(5.20) is known as the syndrome.

(e) Show that the group kernel C = Ker s has 2l−r elements. The
subgroup C of the channel

(
(Z/2)l, +, e0

)
is known as the Hamming

code of dimension l − r.

(f) Write out the 16 elements of the Hamming code of dimension 4 in
the channel of length 7. (Note that these may be used to encode
hexadecimal digits.)

(g) Show that the elements of the Hamming code may be obtained
equally well, either as elements of the group kernel of the syndrome,
or from expressions such as ei + ej + ei ∗ ej for 1 ≤ i 6= j < 23.

(h) If the word 1101100 is received in the channel of length 7, which is
the most likely element of the Hamming code to have been trans-
mitted?

(i) If the word 1101101 is received in the channel of length 7, which is
the most likely element of the Hamming code to have been trans-
mitted?

3. Dyadic integers. When we do mathematics, we carry a picture of
the set Z of integers much like (1.1). Although we normally work with
relatively small integers, represented by their decimal expansions, we
do have the capacity to contemplate arbitrarily large numbers, with a
positive or negative sign. In a computer, the representation of integers
is different. The representation corresponds to a binary expansion, and
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FIGURE 5.3: Paths in the binary tree.

there is a limit on the size of the integers that can be handled directly,
say 264−1. Computer representations of integers are modeled by the set
Z2 of dyadic or 2-adic integers. To emphasize the distinction, members
of the set Z are described as rational integers.

Replacing (1.1), the typical picture is displayed in Figure 5.3. The
starting point is the asterisk at the bottom, the root of the binary tree.
At the next level up are the two binary digits 0 and 1, forming the set
Z/2 of integers modulo 2. Above them is the set Z/4 of integers modulo
4, with the elements written in their binary expansions:

Z/22 = {00, 01, 10, 11} .

One level higher is

Z/23 = {000, 001, . . . , 111} ,

and so on. Each node in the tree is a bit string b (considering ∗ as the
empty string or string of length zero). Two arrows emerge from the
node b, one going to 0b and one to 1b.
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Now consider a particular integer, say 6. In the set Z/2 of integers
modulo 2, the integer 6 belongs to the class of even integers, repre-
sented by the binary digit 0. In Z/22 , the integer 6 is represented by
6 mod 22 = 2, but written in binary notation as 10. In Z/23 , the in-
teger 6 is represented by 6 mod 23 = 110. In Z/24 , the integer 6 is
represented by 6 mod 24 = 0110. From then on, 6 is represented by
0 . . . 0110. Altogether, the integer 6 is represented by the path

∗ → 0 → 10 → 110 → 0110 → 00110 → · · · → 0 . . . 0110 → . . .

in the binary tree. A general rational integer a is represented by the
path

∗ → a mod 2 → a mod 22 → · · · → a mod 2r → a mod 2r+1 → . . .

in the binary tree. The set Z2 of dyadic integers consists of the full set
of all paths from the root in the binary tree. In a particular computer
implementation, the paths have to stop after a certain point, say after
64 steps.

(a) Find the path representing the integer 13.
(b) Find the path representing the integer −1.
(c) Find the path representing the integer −5.
(d) Show that the path representing a natural number n eventually has

each step of the form

k zeroes︷ ︸︸ ︷
00 . . . 00 b →

k+1 zeroes︷ ︸︸ ︷
000 . . . 00 b

for some finite bit string b that is a binary expansion of n.
(e) Show that the path representing a negative number n eventually

has each step of the form

k ones︷ ︸︸ ︷
11 . . . 11 b →

k+1 ones︷ ︸︸ ︷
111 . . . 11 b

for some finite bit string b. What is the relation of the bit string b
to n?

(f) Show that the path

∗ → 1 → 01 → 101 → 0101 → 10101 → 010101 → 1010101 → . . .

represents a dyadic integer which is not a rational integer.
(g) Show that the map

(
Z/2r+1 ,+, 0

) → (
Z/2r , +, 0

)
; a mod 2r+1 7→ a mod 2r

is a well-defined group homomorphism for each positive integer r.
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(h) Show that the map
(
Z/2r+1 , ·, 1) → (

Z/2r , ·, 1)
; a mod 2r+1 7→ a mod 2r

is a well-defined monoid homomorphism for each integer r > 0.

(i) Given two paths

∗ → a1 → a2 → · · · → ar → ar+1 → . . .

and
∗ → b1 → b2 → · · · → br → br+1 → . . .

(with ak, bk in Z/2k for k > 0), show that there is a well-defined
sum

∗ → a1+b1 → a2+b2 → · · · → ar +br → ar+1+br+1 → . . . (5.21)

and a well-defined product

∗ → a1 · b1 → a2 · b2 → · · · → ar · br → ar+1 · br+1 → . . . (5.22)

of paths.

(j) Show that the set Z2 of dyadic integers forms an additive group
under the sum (5.21).

(k) Show that the set Z2 of dyadic integers forms a monoid under the
multiplication (5.22).

(l) Show that the map Z→ Z2 taking a rational integer a to the path

∗ → a mod 2 → a mod 22 → · · · → a mod 2r → a mod 2r+1 → . . .

is a group homomorphism for sums and a monoid homomorphism
for products.

4. The Euler φ-function. The Euler φ-function is defined by setting
φ(d), for a positive integer d, to be the number

|(Z/d)∗|

of elements in the group of units of the monoid (Z/d, ·, 1) of integers
modulo d under multiplication.

(a) Let d be a positive integer. For a nonzero integer a, show that
a mod d is a unit of (Z/d, ·, 1) if and only if gcd(a, d) = 1.

(b) For a prime number p, show that φ(p) = p− 1.
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(c) For a power pe of a prime number p, with e > 0, show that there
are pe−1 elements of the set

Z/pe = {0, 1, 2, . . . , pe − 1}

which are multiples of p. Conclude that

φ(pe) = pe − pe−1 = pe

(
1− 1

p

)
.

(d) Use Theorem 5.6 and the Chinese Remainder Theorem to show
that

(Z/mn)∗ ∼= (Z/m × Z/n)∗

for coprime positive integers m and n.

(e) Use Theorem 4.33 (page 76) to conclude that

φ(mn) = φ(m)φ(n) (5.23)

for coprime positive integers m and n. The property (5.23) is
sometimes described as the multiplicativity of the Euler φ-function.

(f) Given a positive integer n, consider its factorization

n = pe1
1 pe2

2 . . . per
r

into a product of powers of distinct prime numbers, as given by the
Fundamental Theorem of Arithmetic. Show that the value of the
Euler φ-function is

φ(n) = n

(
1− 1

p1

)(
1− 1

p2

)
. . .

(
1− 1

pr

)
. (5.24)

(g) For d > 1, let 1 = d1, d2, d3, . . . , ds−1, ds = n be a full list of the
positive divisors of d. (Compare Figure 1.3 for d = 72.) Show that

φ(d1) + φ(d2) + · · ·+ φ(ds) = d .

5. Consider the set

X =
{ [

n m
0 n

] ∣∣∣∣ n,m in Z, n 6= 0
}

of upper triangular matrices, and the division function

d : X → R;
[
n m
0 n

]
7→ n−1m (5.25)

(compare Section 3.3).
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(a) Show that (X, ·, I2) forms a monoid under the usual matrix multi-
plication.

(b) Show that (X, ◦) forms a monoid under Hadamard multiplication
(4.18) of matrices. In particular, specify the identity element of
this monoid.

(c) Show that the division function

d : (X, ◦) → (R, ·)

of (5.25) is a monoid homomorphism to the monoid of real numbers
under multiplication.

(d) Show that the division function

d : (X, ·, I2) → (R,+, 0)

of (5.25) is a monoid homomorphism to the monoid of real numbers
under addition. Is it a group homomorphism?

(e) Apply the First Isomorphism Theorem for Sets (page 57) to the
division function d of (5.25), obtaining the factorization

X
d−−−−→ R

s

y
xj

Xker d −−−−→
b

Q

in which the function b is invertible. Use the inverse isomorphism
(of sets)

b−1 : Q→ Xker d ,

together with the technique of Exercise 5, to create an additive
group structure (Xker d, +) and a multiplicative monoid structure
(Xker d, ·) on the set Xker d of equivalence classes. Show that the
surjection s yields monoid homomorphisms

s : (X, ·) → (Xker d, +)

and

s : (X, ◦) → (Xker d, ·) .

In particular, note the indirect confirmation that the well-defined
multiplication (3.9) and addition (3.10) are associative operations.
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5.9 Notes

Section 5.3

Quotient groups are sometimes described as “factor groups,” particularly
in the older literature. Unfortunately, this usage leads to confusion with the
designation of X and Y as the factors in the direct product X × Y .

Section 5.4

The Chinese Remainder Theorem is usually attributed to the third century
mathematician Sun Zi (not to be confused with the author of The Art of
War).

Section 5.5

In contrast with the convention of (5.15), some authors use the notation
|x| for the order of a group element x. For an element Ng of the quotient
G/N of a group G by a normal subgroup N , this notation leads to confusion
between the order |〈Ng〉| of the quotient group element Ng and the size |Ng|
of the coset Ng.

Section 5.6

A. Cayley was an English mathematician who lived from 1821 to 1895.

Section 5.8

R. Hamming was an American mathematician who lived from 1915 to 1998.
L. Euler was a Swiss mathematician, later moving to Russia, who lived from
1707 to 1783.
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Chapter 6

RINGS

Many of the sets encountered so far — such as the integers Z, the reals R, or
the 2 × 2 real matrices R2

2 — have carried an additive group structure and
a multiplicative semigroup or monoid structure. These two structures often
combine to form a richer structure, known as a ring.

6.1 Rings

In Definition 6.1 below, a ring is defined as a set with two operations, an
addition x+y and a multiplication x ·y (or often just xy) of elements x and y
of R. In compound expressions involving both additions and multiplications,
the multiplications are to be carried out first (following the convention used
when working with integers and real numbers). For example, the right-hand
side of (6.1) below is computed as (x · r) + (y · r), and not as x(r + y)r. We
say that the multiplication binds more strongly than the addition.

DEFINITION 6.1 (Distributive laws, unital and nonunital rings.)
Suppose that a set R carries a (commutative) additive group structure (R, +, 0)
and a multiplicative semigroup structure (R, ·).

(a) The combined structure (R, +, ·) is said to satisfy the right distributive
law if

(x + y) · r = x · r + y · r (6.1)

for all x, y, r in R.

(b) The structure (R,+, ·) is said to satisfy the left distributive law if

r · (x + y) = r · x + r · y (6.2)

for all x, y, r in R.

(c) The structure (R, +, ·) is said to be a (nonunital) ring if it satisfies both
the right and left distributive laws.

127
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(d) A ring (R, +, ·) is said to be a (unital) ring if it forms a monoid (R, ·, 1)
under multiplication.

(e) A ring (R, +, ·) is said to be commutative if the semigroup (R, ·) is
commutative.

REMARK 6.2 Note that the group structure (R, +, 0) of a ring (R, +, ·) is
always commutative. The issue of commutativity in a ring — Definition 6.1(e)
— only arises in connection with the semigroup structure (R, ·). For a com-
mutative ring (R, +, ·), the left and right distributive laws coincide. In a
general ring (R,+, ·), to say that two elements x and y commute means that
x · y = y · x (compare Definition 4.2, page 68).

The identity element 0 of the additive group (R, +, 0) of a ring (R, +, ·) is
known as the zero of the ring R. If R is unital, then the identity element 1 of
the monoid (R, ·, 1) is known as the identity or the one of the ring R. Unital
rings are sometimes described as rings with a one, while nonunital rings are
called rings without a one. In a unital ring R, the invertible elements — the
units of the monoid (R, ·, 1) — are called the units of the ring R. The group
of units of a unital ring R is written as R∗, consistently with the notation of
Proposition 4.20 (page 72).

REMARK 6.3 According to Definition 6.1(c), all rings are nonunital,
regardless of whether they do or do not possess an identity element. When
a ring R which actually has an identity element is described as “nonunital,”
the identity element is being disregarded.

Example 6.4 (Integers.)
The integers form a unital commutative ring (Z, +, ·) under the usual addition
and multiplication. Note that the right distributive law

(m + n)r = mr + nr

reduces to the Law of Exponents in the additive group (Z, +, 0) — compare
Exercise 29 in Chapter 5.

Example 6.5 (Reals.)
The set R of real numbers forms a commutative, unital ring (R, +, ·) under

the usual addition and multiplication.

Example 6.6 (Zero rings.)
Let (A, +, 0) be an abelian group (written additively). Define a new, trivial
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multiplication on the set A by

x ·0 y = 0

for all x, y in A. Then (A, +, ·0) is a nonunital, commutative ring, known
as the zero ring on the abelian group (A,+, 0). Note that the distributive
laws are satisfied trivially, since each side of the equations (6.1) and (6.2) in
A reduces to 0.

Example 6.7 (The trivial ring.)
The zero ring on the trivial abelian group {0} is unital, with 0 as the identity
element. It is known as the trivial ring .

The following example does not exhibit a ring. It shows that having an
additive group structure and a semigroup structure connected by one of the
distributive laws is not enough to guarantee that the other distributive law
will hold (and thus to yield a ring).

Example 6.8
Let (A, +, 0) be a nontrivial additive group, say with nonzero element a.

Define the semigroup operation

x · y = y

on A, as in Example 5.33 (page 110). Note that the left distributive law (6.1)
holds trivially, since each side reduces to

x + y .

On the other hand, the right distributive law reduces to

r = r + r ,

which does not hold for r = a.

Example 6.9 (Integers modulo d.)
Let d be a positive integer. Then the set Z/dZ or Z/d of integers modulo

d forms a commutative unital ring (Z/d, +, ·) under modular addition and
multiplication. Using (3.21) and (3.22), the distributive law for Z/d follows
from the distributive law for the integers (Exercise 2). Note that for d = 1,
the ring Z/d is the unital zero ring of Example 6.7.

Example 6.10 (Matrix rings.)
For a nonunital ring R, let R2

2 denote the set of 2× 2 matrices
[
r11 r12

r21 r22

]
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with entries rij from R. Then R2
2 forms an additive (commutative) group

under the componentwise addition (4.17), and a noncommutative semigroup
under the usual multiplication (2.7) of matrices. The distributive laws also
hold (Exercise 3). If the ring R is unital, then so is the corresponding matrix
ring R2

2. Its identity element is the matrix

I2 =
[
1 0
0 1

]

in which the entries are the zero and identity of the unital ring R.

Example 6.11 (Direct products.)
Let (R, +, ·) and (S, +, ·) be nonunital rings. The product group (R × S, +)

and semigroup (R × S, ·) combine to form a ring (R × S, +, ·), the (direct)
product of the rings R and S. Note that the distributive laws in the product
follow componentwise from the distributive laws in the factors R and S (Ex-
ercise 5). If R and S are unital, then R × S is unital, with componentwise
identity element (1, 1).

Example 6.12 (Function rings.)
Let X be a set, and let (S, +, ·) be a ring. According to Definition 4.34 (page
77) and Exercise 23 in Chapter 4, the set SX of all functions f : X → S from
X to S carries a componentwise additive group structure (SX , +, z) — with
the constant zero function

z : X → S; x 7→ 0

— and a componentwise semigroup structure (SX , ·). Now for functions
f, g, h : X → S, the right distributive law in S implies

[(f + g) · h](x) = [f(x) + g(x)] · h(x)
= f(x) · h(x) + g(x) · h(x) = [f · h + g · h](x)

for each element x of X. Thus the right distributive law

(f + g) · h = f · h + g · h

holds in (SX ,+, ·). By a similar argument, the left distributive law also holds
(Exercise 6). The set SX becomes a ring, the X-th power of the ring S, or
the ring of S-valued functions on the set X. If S is unital, then so is the
power SX . Its identity element is the function u : X → S; x 7→ 1 which takes
a constant value of the identity in S at each element x of X. For example,
the set RR of all real functions f : R→ R forms a unital ring.
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6.2 Distributivity

What is the significance of the distributive laws in a ring (R, +, ·)? For an
element r of R, consider the left multiplication

R → R; x 7→ r · x (6.3)

by r. The left distributive law (6.2) states that the function (6.3) is a semi-
group homomorphism from (R, +) to itself. By Proposition 5.5, it follows that
the left multiplication by r is a group homomorphism from the additive group
(R,+, 0) of R to itself. In other words, the multiplication preserves the zero:

r · 0 = 0 (6.4)

and the negation:
r · (−s) = −(rs)

for s in R. Furthermore,

r · (x− y) = r · x− r · y (6.5)

for x and y in R (Exercise 7). In similar fashion, the right multiplication

R → R; x 7→ x · s (6.6)

by an element s of R is also a group homomorphism from (R, +, 0) to itself.
Thus

(−r) · (−s) = r · s (6.7)

holds for any r and s in R (Exercise 8). Another useful property is the
equation

r · 0 = 0 = 0 · r (6.8)

for any element r of R. Indeed,

0 + r · 0 = r · 0 = r · (0 + 0) = r · 0 + r · 0 ,

the first two equations holding by the group axioms, and the third by left
distributivity. Cancellation in the group (R, +, 0) then yields 0 = r · 0. The
other equation in (6.8) is proved similarly (Exercise 9).

In a ring (R, +, ·), it is useful to have a so-called sigma notation for repeated
sums. Let m be an integer. Suppose that xi is an element of R, for integers
i = m,m + 1,m + 2, . . . . By induction on n, define

l∑

i=m

xi = 0
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for any integer l < m, and

n+1∑

i=m

xi = xn+1 +
n∑

i=m

xi .

Thus
5∑

i=1

xi = x1 + x2 + x3 + x4 + x5 ,

for example. Note that the index i in the sigma notation is a bound or dummy
variable, which may be replaced by any other symbol, e.g.,

n∑

i=1

xi =
n∑

j=1

xj =
n−1∑

k=0

xk+1 .

Using the sigma notation, we formulate an extension of the distributive laws.
(The proof by induction is assigned as Exercise 11.)

PROPOSITION 6.13 (Generalized distributive law.)
Let xi and yi be elements of a ring R, for i = 1, 2, . . . . Then

( m∑

i=1

xi

)
·
( n∑

j=1

yj

)
=

m∑

i=1

n∑

j=1

xiyj (6.9)

for natural numbers m and n.

COROLLARY 6.14

Let x and y be elements of a ring (R, +, ·). Then for integers m and n,

(mx) · (ny) = (mn)xy . (6.10)

PROOF The proof divides naturally into four cases:

• For m, n > 0, set xi = x and yj = y in Proposition 6.13.

• For m < 0, n > 0, set xi = −x and yj = y in Proposition 6.13.

• For m > 0, n < 0, set xi = x and yj = −y in Proposition 6.13.

• For m, n < 0, set xi = −x and yj = −y in Proposition 6.13.

Note that (6.10) is trivial if m = 0 or n = 0.
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6.3 Subrings

The concept of a subring in a ring combines the concepts of subgroups,
subsemigroups, and submonoids.

DEFINITION 6.15 (Unital and nonunital subrings.)

(a) A subset S of a nonunital ring (R, +, ·) is said to be a (nonunital) sub-
ring of R if S is a subgroup of (R, +, 0) and a subsemigroup of (R, ·).

(a) A subset S of a unital ring (R,+, ·) is said to be a (unital) subring of
R if S is a subgroup of (R, +, 0) and a submonoid of (R, ·, 1).

It is often left implicit as to whether a subring is asserted to be nonunital
or unital. For example, in any ring R, the subset R itself forms a subring,
the improper subring. It will be always be a nonunital subring, and will be
a unital subring if R itself is unital. On the other hand, the trivial ring {0}
(compare Example 6.6) is a nonunital subring of each ring R. Although the
trivial ring is unital, it is not a unital subring of any nontrivial unital ring (in
which 0 6= 1).

Example 6.16 (Subrings of the integers.)
By Theorem 4.46 (page 81), each subgroup of the additive group (Z, +, 0) of
integers is the set dZ of multiples of some natural number d. Since the divis-
ibility relation is transitive, each subgroup of (Z, +, 0) is also a subsemigroup
of (Z, ·), and hence a nonunital subring of the unital ring of integers. In fact,
since 1Z = Z, the only unital subring of Z is the improper subring.

To check that a subset S of a ring R is a (nonunital) subring of R, Propo-
sition 4.43 and Remark 4.44 (page 80) show that three properties of S have
to be verified:

• S is nonempty;

• x and y in S imply x− y in S;

• x and y in S imply x · y in S.

Example 6.17 (The ring R[i], complex numbers, Gaussian integers.)
Let R be a unital ring, and let R[i] be the set of 2× 2 matrices of the form

[
x −y
y x

]



134 Introduction to Abstract Algebra

for x and y in R. Then R[i] is a unital subring of the ring R2
2 of all 2 × 2

matrices over R. Certainly the identity matrix I2 lies in R[i], and R[i] is
closed under the (componentwise) subtraction of matrices. Now
[
x −y
y x

]
·
[
u −v
v u

]
=

[
xu− yv −xv − yu
yu + xv −yv + xu

]
=

[
(xu− yv) −(yu + xv)
(yu + xv) (xu− yv)

]
, (6.11)

so that R[i] is also closed under multiplication. If R is commutative, it follows
from (6.11) that R[i] is also commutative. Here are two important special
cases:

• The ring R[i] is the ring C of complex numbers (compare Study Project 1);

• The subring Z[i] of R[i] is known as the ring of Gaussian integers.

Also, see Example 7.18 (page 163).

Let R be a unital ring, with the identity element (exceptionally) denoted by
u. The cyclic subgroup 〈u〉 of (R, +, 0) generated by u, the set of all integral
multiples nu of u, forms a unital subring of (R, +, ·). Indeed for integers m
and n, Corollary 6.14 yields

(mu) · (nu) = (mn)(uu) = (mn)u .

The subring 〈u〉 is known as the prime subring of R. If u has infinite order,
the ring R is said to have characteristic 0. If u has finite order d, the ring R
is said to have characteristic d.

Let y be an element of a unital ring (R, +, ·). Continuing to write u for the
identity element of R, and considering a natural number m, Corollary 6.14
yields

(mu)x = m(ux) = mx (6.12)

on setting n = 1 and x = u. Similarly, we get

x(mu) = m(xu) = mx . (6.13)

Thus:

PROPOSITION 6.18 (Characteristic and additive order.)
Let (R, +, ·) be a unital ring.

(a) Each element of the prime subring of R commutes with each element of
R.

(b) If R has finite characteristic d, then in the abelian group (R, +, 0), each
element x has finite order dividing d.
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In a unital ring R with identity u and characteristic d, (6.12) and (6.13)
imply that we may consistently identify the multiple nu with the element
n + dZ of the integers modulo d for each natural number n. Thus the prime
subring of R may be considered as the set {n | n in Z} , with m = n if and
only if d divides m− n.

Example 6.19

Consider the ring Z/2Z× Z/2Z, the direct product of two copies of the ring
of integers modulo 2. This ring is unital, with identity element (1, 1). The
prime subring is formed by the diagonal subgroup (compare Exercise 26 in
Chapter 5). The characteristic of Z/2Z× Z/2Z is 2.

6.4 Ring homomorphisms

Let (R, +, ·) and (S, +, ·) be (nonunital) rings.

DEFINITION 6.20 (Ring homomorphisms, isomorphisms.)

(a) A function f : R → S is said to be a (nonunital) ring homomorphism
if it forms both a group homomorphism f : (R, +, 0) → (S, +, 0) and a
semigroup homomorphism f : (R, ·) → (S, ·).

(b) If R and S are unital rings, then a ring homomorphism f : R → S
is described as unital if f(1) = 1, so that f : (R, ·, 1) → (S, ·, 1) is a
monoid homomorphism.

(c) A bijective ring homomorphism is called a ( ring) isomorphism. The
notation R ∼= S means that rings R and S are isomorphic.

The image f(R) of a ring homomorphism f : R → S is a subring of the
codomain ring S (nonunital or unital, according to whether f is nonunital or
unital).

Example 6.21 (Inclusion of subrings.)
Let S be a (nonunital) subring of a ring R. Then the inclusion map

j : S ↪→ R; x 7→ x

from S to R is a (nonunital) ring homomorphism. If R is unital, and S is a
unital subring, then j : S ↪→ R is a unital ring homomorphism.
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Example 6.22 (Abelian group homomorphisms.)
Let (A, +, 0) and (B, +, 0) be abelian groups. Let f : (A, +, 0) → (B, +, 0)

be a group homomorphism. Then there is a (nonunital) ring homomorphism

f : (A,+, ·0) → (B,+, ·0); x 7→ f(x)

of the corresponding zero rings.

Example 6.23 (Projections and insertions.)
Let R and S be rings. Then the projections

π1 : R× S → R; (x, y) 7→ x

and
π2 : R× S → S; (x, y) 7→ y

are ring homomorphisms (compare Example 5.4). If R and S are unital, the
projections are unital ring homomorphisms. The insertions

ι1 : R → R× S;x 7→ (x, 0)

and
ι2 : S → R× S; y 7→ (0, y)

are also ring homomorphisms. (The notation is quite standard: ι is the Greek
letter “iota.”) However, even if R and S are unital, the insertion ι1 is only
unital if S is trivial, since the identity of R× S is (1, 1).

Example 6.24 (Determinants.)
Although the determinant function (5.2) is a monoid homomorphism for the
usual matrix multiplication, it does not form a ring homomorphism, since

det(A + B) 6= det A + det B

for general matrices A and B.

Example 6.25 (Scalar multiples of the identity matrix.)
Let R be a unital ring, and let R[i] be the corresponding ring of matrices

from Example 6.17. Then there is an injective unital ring homomorphism

e : R → R[i]; x 7→
[
x 0
0 x

]
. (6.14)

Note that for each element x of R, the image e(x) is the scalar multiple xI2

of the identity matrix I2 by the scalar x. It is convenient to identify the ring
R with its isomorphic image e(R) under (6.14), so that R becomes a subring
of the ring R[i].
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We conclude this section with a further examination of the relationship
between unital and nonunital rings. It has already been noted that a unital
ring becomes nonunital, simply by disregarding the special role of the identity
element (Remark 6.3). Now suppose that R is a nonunital ring. Write R + Z
for the direct product set {(r,m) | r in R , m in Z} . with componentwise
additive group structure. Define a multiplication on R + Z by

(r,m) · (s, n) = (rs + ms + nr,mn) . (6.15)

This multiplication is associative, and distributive over the componentwise
addition on each side (Exercise 25). Now (0, 1) ·(r,m) = (r,m) = (r,m) ·(0, 1)
for r in R and m in Z, so R+Z becomes a unital ring (R+Z, +, ·) with identity
element (0, 1). Consider the map eR : R → R + Z; r 7→ (r, 0) . This map is
clearly an injective group homomorphism, and from (6.15) it is also seen to
be a semigroup homomorphism. Thus f is an injective ring homomorphism.
A nonunital ring R is often identified with its isomorphic image eR(R) under
eR. One may then say that each nonunital ring R embeds into a unital ring
R + Z.

6.5 Ideals

Consider a ring homomorphism f : R → S. The group kernel Ker f or

J = {x in X | f(x) = 0}
has the so-called absorptive property :

j in J and x in R imply jx, xj in J . (6.16)

Indeed, for j in J and x in X,

f(jx) = f(j)f(x) = 0 · f(x) = 0 = f(x) · 0 = f(x)f(j) = f(xj) .

DEFINITION 6.26 (Ideal of a ring.) A subset J of a ring (R, +, ·) is
said to be an ideal of R, written J / R, if:

• It forms a subgroup of (R, +, 0);

• It satisfies the absorptive property (6.16).

Thus we have the ring-theoretic analogue of Proposition 5.11.

PROPOSITION 6.27 (Kernels of homomorphisms are ideals.)
The group kernel Ker f of a ring homomorphism f : R → S forms an ideal

in the domain ring R.
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In the context of Proposition 6.27, the group kernel Ker f is described as
the ring kernel of the ring homomorphism f : R → S.

Example 6.28 (Ideals of zero rings.)
Let (A, +, 0) be an (additive) abelian group. If J is a subgroup of A, then J
trivially satisfies the absorptive property (6.16) under the multiplication ·0 of
the zero ring (A, +.·0). Thus J forms an ideal of the zero ring. In fact, J is
the ring kernel of the ring homomorphism (A, +, ·0) → (A/J,+, ·0) furnished
by the group homomorphism

A → A/J ; x 7→ x + J

(compare Example 6.22).

Since an ideal J of a ring R is by definition a subgroup of (R, +, 0), the
absorptive property (6.16) specializes (considering x from J rather than from
anywhere in R) to show that ideals are certainly subrings. By (6.8), it is
seen that the trivial subring of a ring R forms an ideal of R. The improper
subring R of R also forms an ideal, the improper ideal. If R is a unital ring,
the absorptive property (6.16) shows that an ideal containing the identity
element is improper.

DEFINITION 6.29 (Simple rings.) A ring R is said to be simple if
it has no proper, nontrivial ideals.

Example 6.30 (Rings of prime order are simple.)
Let R be a ring with a prime number of elements. By Proposition 4.51, the

additive group (R, +, 0) of the ring R has no proper, nontrivial subgroups.
Thus the ring R has no proper, nontrivial ideals: It is simple. For instance,
the ring of integers Z/pZ (compare Example 6.9) modulo a prime number
p forms a simple ring. Similarly, the zero ring (A, +.·0) determined by an
abelian group with a prime number of elements is also simple.

In contrast to simple rings, the ring of integers has many ideals.

Example 6.31 (Ideals in the ring of integers.)
Each subring of the ring (Z, +, ·) is just the set dZ of multiples of a certain

natural number d (Example 6.16). Since divisibility is a transitive relation, it
follows that each subring of Z is actually an ideal of Z. Conversely, since each
ideal is a subring, each ideal is of the form dZ for some natural number d.

The divisibility relation on the set of natural numbers translates nicely to
the subset relationship on the set of ideals of Z.
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PROPOSITION 6.32 (Ideals and divisibility.)
Let c and d be natural numbers. Then d divides c if and only if the ideal cZ

is a subset of the ideal dZ.

PROOF If c is a multiple of d, then c lies in dZ, so the ideal cZ is a subset
of the ideal dZ. Conversely, if cZ is a subset of dZ, then c · 1 = c belongs to
the set dZ of multiples of d.

The concept of an ideal arose in an attempt to extend divisibility properties
of integers to more general rings. It transpired that the sets of multiples
were more amenable than the actual elements themselves, so these sets were
considered as “ideal numbers.”

6.6 Quotient rings

If J is an ideal in a ring (R, +, ·), then we may form the quotient group
R/J , the set of cosets x + J of the (normal) subgroup J in the abelian group
(R,+, 0). Now since J is an ideal in R, there is a well-defined semigroup
multiplication on R/J given by

(x + J)(y + J) = xy + J

for x, y in R. Suppose that the respective cosets x + J and y + J are also
represented by ring elements x′ and y′, so that x′ = x + j and y′ = y + k for
elements j and k of J . Then

x′y′ + J = (x + j)(y + k) + J = xy + (xk + jy + jk + J) = xy + J ,

since xk + jy + jk is an element of the ideal J . The distributivity of the
multiplication over the addition in R/J follows from the distributivity in R
(Exercise 34). Thus the quotient group R/J actually forms a quotient ring .
The group homomorphism

s : R → R/J ; x 7→ x + J (6.17)

becomes a ring homomorphism. If R is unital, then so is the quotient R/J ,
with identity element 1 + J . In this case the function (6.17) becomes a unital
ring homomorphism.

Example 6.33 (Modular arithmetic.)
For a positive integer d, the ring Z/dZ of integers modulo d (Example 6.9) is
the quotient of the ring Z of integers by the ideal dZ consisting of all multiples
of d.
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Just as for groups (Section 5.4), a ring homomorphism factorizes under a
strengthened version of the First Isomorphism Theorem.

THEOREM 6.34 (First Isomorphism Theorem for Rings.)
Let f : (R, +, ·) → (S, +, ·) be a ring homomorphism.

(a) The group kernel K = f−1{0} is a ideal in the domain ring R.

(b) The image f(R) is a subring of the codomain ring S.

(c) In the factorization
f = j ◦ b ◦ s

given by the First Isomorphism Theorem for Sets, the surjection s may
be taken as the surjective homomorphism

s : X → X/K;x 7→ x + K

of (6.17), the bijection b is the well-defined ring isomorphism

b : R/K → f(R); x + K 7→ f(x)

from the quotient R/K to the image f(R), and the injection j is the
injective ring homomorphism

j : f(R) ↪→ S; f(x) 7→ f(x)

of Example 6.21.

Example 6.35 (Kernels and images of projections and insertions.)
Let R and S be rings. In Example 6.23, the ring kernel of the surjective

projection π2 : R×S → S is the image ι1(R) of the ring R under the insertion
ι1. Thus the First Isomorphism Theorem exhibits an isomorphism

(R× S)/ι1(R) ∼= S .

Similarly, (R× S)/ι2(S) ∼= R (Example 35).

6.7 Polynomial rings

Let R be a ring. An indeterminate X (over R) is a symbol that is not
related to any element of R. A polynomial over R in an indeterminate X is
an expression of the form

p(X) = pnXn + pn−1X
n−1 + · · ·+ p2X

2 + p1X + p0 . (6.18)
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Here n is a natural number, while pn, pn−1, . . . , p2, p1, p0 are elements
of R known as the coefficients of the polynomial p(X). Specifically, pi (for
0 ≤ i ≤ n) is called the coefficient of Xi in p(X). The individual summands
piX

i in (6.18) are called the terms of the polynomial. (The final summand
p0 may be written as p0X

0.) If R is unital, a term 1Xi may be written just
as Xi. If a coefficient pi happens to be zero, then the term piX

i need not be
written explicitly. For example, 1X2 + 1 and X2 + 2X + 1 denote the same
polynomial if R is the ring of integers modulo 2. Continuing this convention,
two polynomials, say p(X) as in (6.18) and

q(X) = qmXm + · · ·+ q1X + q0 , (6.19)

are defined to be equal if

pr = qr , pr−1 = qr−1 , . . . , p2 = q2 , p1 = q1 , p0 = q0

for r = min(m,n) and
pi = 0 , qi = 0

for i > r. (This is the process of equating coefficients.) For example, the
polynomials

25X2 + X − 3

and
0X3 + 25X2 + X − 3

are equal if R is the ring Z of integers. The set of all polynomials in X over
R is written as R[X]. It includes the ring R itself, as the set of constant
polynomials p0. (Note that the single zero coefficient cannot be omitted from
the constant polynomial 0.)

The set R[X] of polynomials in X over R inherits a componentwise additive
abelian group structure (R[X], +, 0) from R. Thus if n = m, the sum of p(X)
from (6.18) and q(X) from (6.19) is

(p + q)(X) = (pn + qn)Xn+(pn−1 + qn−1)Xn−1 + . . .

· · ·+ (p2 + q2)X2 + (p1 + q1)X + (p0 + q0) .

The negative −p(X) of p(X) is the polynomial

(−p)(X) = −pnXn − pn−1X
n−1 − · · · − p2X

2 − p1X − p0

obtained from p(X) by negating all the coefficients. Using the sigma notation
introduced in Section 6.2, the polynomial p(X) of (6.18) may be written as

p(X) =
n∑

i=0

piX
i

(admitting i = 0 as a possible index).
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A semigroup structure (R[X], ·) will now be defined, in such a way that the
multiplication · is distributive over the addition in the group (R[X], +, 0). To
specify such a multiplication, it suffices to set

Xi ·Xj = Xi+j

and
r ·Xi = rXi = Xi · r

for elements r of R and for natural numbers i, j. Thus for the polynomials
p(X) from (6.18) and q(X) from (6.19), distributivity gives

( n∑

i=0

piX
i

)
·
( m∑

i=0

qiX
i

)
=

n+m∑

k=0

( k∑

j=0

pjqk−j

)
Xk . (6.20)

Note that coefficients such as pn+m appearing in (6.20) (on the right-hand
side for k = n + m and j = k), but not in (6.18) or (6.19), are taken to be
zero. In effect, (6.20) is modeled on the usual product of real polynomials in
R[X], systematically collecting all the terms involving a specific power Xr of
the indeterminate X. For example, (6.20) gives

(5X + 1)(7X2 + 3X + 2)

= (1 · 2) + (1 · 3 + 5 · 2)X + (1 · 7 + 5 · 3)X2 + (5 · 7)X3

= 35X3 + 22X2 + 13X + 2 .

The multiplication may be displayed schematically as follows.

7X2 3X 2

5X 5 · 7X3 5 · 3X2 5 · 2X

1 1 · 7X2 1 · 3X 1 · 2¡
¡

¡
¡

¡
¡

¡
¡

¡
¡¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡¡

¡
¡

¡
¡

¡
¡

¡¡

Equal powers of the indeterminate X are collected along the diagonal stripes,
corresponding to the right-hand side of (6.20).
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THEOREM 6.36

Let R be a ring, and let X be an indeterminate.

(a) The set R[X] of polynomials over R in an indeterminate X forms a ring
with componentwise additive group structure, and with the multiplication
(6.20).

(b) The ring (R, +, ·) is a subring of (R[X], +, ·), namely the subring of
constant polynomials.

(c) If R is commutative, then the ring (R[X], +, ·) is commutative.

(d) If R is unital, then the ring (R[X], +, ·) is unital, with identity element
given by the constant polynomial 1.

PROOF Most of Theorem 6.36 is straightforward. We will just see how
the associativity of the multiplication (6.20) is verified. To do this, it is helpful
to rewrite (6.20) in the form

( n∑

i=0

piX
i

)
·
( m∑

j=0

qjX
j

)
=

n+m∑

h=0

( ∑

i+j=h

piqj

)
Xh (6.21)

with the convention that sums like those in the coefficient of Xk on the right-
hand side of (6.21) are understood to be taken over all natural numbers i and
j satisfying the specified condition i+j = k. Consider the polynomials (6.18),
(6.19), and

r(X) =
l∑

k=0

rkXk .

Using the new convention, we have

[( n∑

i=0

piX
i

)
·
( m∑

j=0

qjX
j

)]
·
( l∑

k=0

rkXk

)

=
[ n+m∑

h=0

( ∑

i+j=h

piqj

)
Xh

]
·
( l∑

k=0

rkXk

)

=
n+m+l∑

g=0

[ ∑

h+k=g

( ∑

i+j=h

piqj

)
rk

]
Xg

=
n+m+l∑

g=0

( ∑

i+j+k=g

piqjrk

)
Xg
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=
n+m+l∑

g=0

[ ∑

i+h=g

pi

( ∑

j+k=h

qjrk

)]
Xg

=
( n∑

i=0

piX
k

)
·
[ m+l∑

h=0

( ∑

j+k=h

qjrk

)
Xh

]

=
( n∑

i=0

piX
k

)
·
[( m∑

j=0

qjX
j

)
·
( l∑

k=0

rkXk

)]

as verification of the associative law in R[X].

DEFINITION 6.37 (The ring of polynomials.) The ring (R[X], +, ·)
of Theorem 6.36 is called the polynomial ring or ring of polynomials over R
in the indeterminate X.

Example 6.38 (Binomial coefficients.)
Let n be a natural number. The binomial coefficients are defined as the

coefficients
(
n
r

)
of the polynomial

(1 + X)n =
n∑

r=0

(
n

r

)
Xr (6.22)

in Z[X]. Note that (
n

0

)
= 1 =

(
n

n

)

for all natural numbers n. Further,

(
n

r

)
= 0

for r > n, by the convention allowing additional zero terms in the polynomial
(6.22). Since

(1 + X)n+1 = (1 + X)n · (1 + X) (6.23)

by (5.10) in the monoid (Z[X], ·, 1), we obtain the recurrence relation

(
n + 1
r + 1

)
=

(
n

r + 1

)
+

(
n

r

)
(6.24)

for natural numbers r from the definition (6.20) of the multiplication in the
polynomial ring Z[X], equating coefficients of Xr+1 on each side of (6.23).
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6.8 Substitution

In Section 6.7, polynomials were described as formal combinations of powers
of an indeterminate X. On the other hand, polynomials appear in calculus
as special kinds of functions. Functions are obtained from polynomials as
follows.

THEOREM 6.39 (Substitution Principle.)
Suppose that

θ : R → S

is a homomorphism between commutative rings R and S. Then for each fixed
element c of the ring S, there is a unique homomorphism

θc : R[X] → S

with θc(X) = c. If θ : R → S is a homomorphism of unital rings, then so is
θc : R[X] → S.

PROOF Consider a polynomial

p(X) = pnXn + pn−1X
n−1 + · · ·+ p2X

2 + p1X + p0

in R[X]. If θc : R[X] → S is any ring homomorphism with θc(X) = c, then

θc

(
p(X)

)
= θ(pn)cn + θ(pn−1)cn−1 + · · ·+ θ(p2)c2 + θ(p1)c + θ(p0) , (6.25)

so that θc is unique. Indeed, since θ : R → S is a ring homomorphism, it is
straightforward to check that the map

θc : R[X] → S

defined by (6.25) is a ring homomorphism (Exercise 37).

DEFINITION 6.40 (Evaluation, roots.) Let S be a subring of a ring
R, and let

j : S ↪→ R; x 7→ x

be the inclusion map from S to R (compare Example 6.21). Let p(X) be a
polynomial in S[X].

(a) For each element c of R, the image jc

(
p(X)

)
in R is written as p(c),

and described as the value of the polynomial p(X) at the element c.
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(b) The function
R → R; c 7→ p(c)

is called evaluation of the polynomial p(X), or the polynomial function
determined by the polynomial p(X).

(c) The element c of R is said to be a root or zero of the polynomial p(X)
if p(c) = 0.

Example 6.41
Consider the polynomial X2− 2 in Z[X]. Then the real number

√
2 is a root

of X2 − 2 in R.

Example 6.42
Consider the polynomial X2 − 1 in Z/8[X]. Then 1, 3, 5, and 7 are four

distinct roots of the quadratic polynomial X2 − 1 in Z/8.

Example 6.43
Consider the polynomial p(X) = X2 + X in Z/2[X]. Then 0 and 1 are roots
of X2 + X in Z/2. In other words, although the polynomial p(X) is nonzero,
it determines the zero function

Z/2 → Z/2; 0 7→ 0, 1 7→ 0

as its polynomial function.

The final result shows that any particular choice of an indeterminate is
irrelevant.

PROPOSITION 6.44 (Indeterminacy of indeterminates.)
Let R be a commutative ring. Let X and Y be indeterminates over R. Then
the polynomial rings R[X] and R[Y ] are isomorphic.

PROOF Let j : R ↪→ R[X] be the inclusion of R as a subring of R[X] —
compare Theorem 6.36(b). Let k : R ↪→ R[Y ] be the corresponding inclusion
in R[Y ]. Then the ring homomorphisms

jY : R[X] → R[Y ]; p(X) 7→ p(Y )

and
kX : R[Y ] → R[X]; p(Y ) 7→ p(X)

are mutually inverse.
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6.9 Exercises

1. Give an example of a set A with an additive group structure (A, +, 0)
and a semigroup structure (A, ·) such that the right distributive law is
satisfied, but not the left. Justify your claims.

2. Let d be a positive integer. Use (3.21) and (3.22), along with the right
distributive law for (Z, +, ·), to give a formal proof of the left distributive
law in (Z/dZ, +, ·).

3. Verify the claims of Example 6.10.

4. Let R be a zero ring (as in Example 6.6). Show that the ring R2
2 of 2×2

matrices over R is commutative.

5. Verify the claims of Example 6.11.

6. Let X be a set, and let S be a ring. Give a careful proof that the left
distributive law holds in (SX , +, ·).

7. Prove that (6.5) holds in each ring R.

8. Prove that (6.7) holds in each ring R.

9. Prove that the right-hand equation in (6.8) holds in each ring R.

10. Write the left-hand side of (1.8) using sigma notation.

11. Prove Proposition 6.13.

12. Show that the right and left distributive laws are both special cases of
the generalized distributive law.

13. Suppose that
xx = x

for each element x of a ring R.

(a) Show that
x + x = 0

for all x in R.

(b) Show that R is commutative.

14. Let S be a subring of a ring R. Show that S2
2 is a subring of R2

2.
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15. Let X be a subset of a ring R. Show that

CR(X) = {r in R | rx = xr for all x in X}

is a subring of R. [The subring CR(X) is known as the commutant of
X in R.]

16. Let S be the set of all functions f : R → R with f(0) = 0. Show that
S forms a nonunital subring of the function ring RR of all real-valued
functions. Does it form a unital subring? Does it form a unital ring?

17. Consider the subset S = {0, 2, 4, 6, 8} of Z/10Z.

(a) Show that S = {0, 2, 4, 6, 8} forms a subring of Z/10Z.

(b) Show that S forms a unital ring.

(c) Show that S is not a unital subring of Z/10Z.

18. Specify the group of units of the monoid of Gaussian integers under
multiplication.

19. Let d be a positive integer. Consider the ring (Z/d)22 of 2 × 2 matrices
over the ring Z/d of integers modulo d.

(a) Show that the prime subring of (Z/d)22 is the set
{[

x 0
0 x

] ∣∣∣∣ x in Z/d

}

of diagonal matrices with equal diagonal entries.

(b) Show that the characteristic of (Z/d)22 is d.

20. What is the prime subring of the ring R2
2 of 2× 2 real matrices?

21. Suppose d > 1.

(a) Show that the ring Z/dZ × Z/dZ is unital, with identity element
(1, 1).

(b) Show that the characteristic of Z/dZ× Z/dZ is d.

22. What is the characteristic of the ring Z/4Z× Z/2Z?

23. What is the characteristic of the ring Z/3Z× Z/2Z?

24. Suppose that x3 = x for each element x of a unital ring R. Show that
R has a finite characteristic d that is a divisor of 6.

25. Verify that the multiplication (6.15) is associative, and that it distributes
on each side over the componentwise addition on R + Z.
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26. Let R be a ring. Identify the prime subring of the unital ring R + Z.

27. Let r be an element of a unital ring R. Show that

(r, 0) · (1,−1) = (0, 0)

in R + Z.

28. Let R be a unital ring having finite characteristic d. Determine the
characteristic of the unital ring R + Z.

29. Let R be a ring. Show that there is a surjective ring homomorphism

p : R + Z→ Z; (r,m) 7→ m.

What is the ring kernel Ker p?

30. Let x be an element of a commutative, unital ring R. Show that xR is
an ideal of R.

31. Let x and y be elements of a commutative, unital ring R. Show that
xR + yR is an ideal of R.

32. Let a and b be positive integers. Show that aZ+ bZ = gcd(a, b)Z.

33. Let x be an element of a unital ring R. Show that

xR + Rx + RxR

is an ideal of R. Note that RxR means {∑n
j=0 sjxtj | n in N ; sj , tj in R}.

34. Let J be an ideal of a ring R. Show that the right and left distributive
laws hold in R/J .

35. Let R and S be rings. Show that (R× S)/ι2(S) ∼= R.

36. Let n, m, and r be natural numbers. Use the definition (6.20) of the
product in the polynomial ring Z[X] to prove the identity

(
n + m

r

)
=

r∑

j=0

(
n

j

)(
m

r − j

)

for binomial coefficients.

37. Complete the proof of Theorem 6.39: Show that the map

θc : R[X] → S

defined by (6.25) is a homomorphism of the additive group and semi-
group (or monoid) structures on R[X] and S.
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38. Determine all the roots of the polynomial X2 + 1 in the ring Z/5 of
integers modulo 5.

39. Determine all the roots of the polynomial X4 − X in the ring Z/4 of
integers modulo 4.

40. Prove the identity
n∑

r=0

(
n

r

)
= 2n

for natural numbers n. [Hint: Evaluate (6.22) at the integer 1.]

41. Prove the identity
n∑

r=0

(−1)r

(
n

r

)
= 0

for positive integers n.

42. Prove the identity
n/2∑
r=0

(
n

2r

)
=

n/2∑
r=1

(
n

2r − 1

)

for even natural numbers n.

43. For natural numbers r ≤ n, show that
(

n

r

)
=

n!
(n− r)!r!

. (6.26)

In particular, conclude that (6.26) gives the number of r-element subsets
of an n-element set.

44. For a prime number p and an integer r with 0 < r < p, show that the
binomial coefficient (

p

r

)

is divisible by p.

45. Let R be a commutative, unital ring of prime characteristic p. Show
that the Frobenius map

ϕ : R → R;x 7→ xp (6.27)

is a ring homomorphism.

46. Show that for each element r of a commutative, unital ring R, there is
a unique unital ring homomorphism φ : Z[X] → R with φ(X) = r.
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6.10 Study projects

1. Complex numbers. Consider the commutative ring R[i] of all matrices

z =
[
x −y
y x

]
(6.28)

with real entries x and y (compare Example 6.17, page 133). These
matrices are known as complex numbers, and the set R[i] is written as
C. Recall that the ring R of real numbers appears as a subring of C,
namely as the ring of scalar multiples xI2 of the identity matrix I2 by
real scalars x (Example 6.25, page 136). There is an additive group
isomorphism

C→ R2;
[
x −y
y x

]
7→ (x, y) (6.29)

from the set of complex numbers z to the real plane R2. Each complex
number (6.28) is often identified with its image (x, y) in the plane.

Define the modulus of the complex number z as the square root

|z| =
{

det
[
x −y
y x

]} 1
2

=
√

x2 + y2

of the (nonnegative) determinant. In the plane representation (6.29),
the modulus of z is the distance of the point (x, y) from the origin
(0, 0). Write the transpose of the matrix z as the complex conjugate

z =
[
x −y
y x

]T

=
[

x y
−y x

]
.

In the plane representation (6.29), complex conjugation corresponds to
reflection (x, y) 7→ (x,−y) in the x-axis.

(a) Show that
|z|2 = z · z .

(b) Show that
z = 0 if and only if |z| = 0 .

(c) Show that the set
S1 =

{
z

∣∣ 1 = |z|} (6.30)

of complex numbers of unit modulus is the special orthogonal group
SO2(R) — compare Study Project 2 in Chapter 4. Note that in
the plane representation (6.29), the set (6.30) is the unit circle, the
circle of points at radius 1 from the origin.
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(d) Given a second element

w =
[
u −v
v u

]

of C, show that
|z · w| = |z| · |w| .

[Hint: Use Example 5.7 (page 97) and Exercise 7 of Chapter 5.]

(e) Rewrite the multiplication formula (6.11) for the product z · w
of two complex numbers z and w using the plane representations
(x, y) and (u, v).
(Note: Although this format is often used for the definition of the
product of complex numbers, it gives no hint as to why the product
should be associative. On the other hand, the definition of the
complex numbers as a subring of the ring of real 2 × 2 matrices
removes the need for any extra verification. It also enables the
modulus and complex conjugation to be reduced to the standard
matrix concepts of determinant and transpose.)

(f) For the complex number

i =
[
0 −1
1 0

]
,

show that i2 = −1 (recalling that the identity 1 of C is the matrix
I2).

(g) Show that each complex number can be written in the form
[
x −y
y x

]
= z = x + iy . (6.31)

(h) Show that each nonzero complex number z is invertible, and that
its inverse is given by

z−1 = |z|−2 · z . (6.32)

(i) For a nonzero complex number z, show that the complex number
|z|−1z is an element [

cos θ − sin θ
sin θ cos θ

]

of the unit circle S1.

(j) Show that each nonzero complex number z can be written in the
polar form

z = r(cos θ + i sin θ)

with real r = |z| > 0 and 0 ≤ θ < 2π.
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2. Check digits. The rings Z/d of integers modulo a positive number
d are often used to mitigate the effect of errors in the recording and
reporting of long sequences of digits. For example, consider a 13-digit
EAN barcode, as illustrated in Figure 6.1.

5 9 0 9 9 9 0 1 9 6 9 2 0

FIGURE 6.1: A (simulated) 13-digit EAN barcode.

Here, it is actually the sequence

a12
‖ a11 a10 . . . a6

‖ a5 . . . a2 a1
‖ (6.33)

of the left-most 12 decimal digits which carries the information (type of
product, manufacturer, etc.). The final digit a0 is known as the check
digit . It is chosen so that the equation

1 · a12 + 3 · a11 + 1 · a10 + · · ·+ 1 · a2 + 3 · a1 + 1 · a0 = 0 (6.34)

is satisfied in the ring Z/10 of integers modulo 10.

(a) Confirm whether the condition (6.34) is satisfied by the example
illustrated in Figure 6.1.

(b) Confirm whether the condition (6.34) is satisfied by the 13-digit
EAN barcode on this book.

(c) Show that for each 12-digit sequence (6.33) of decimal digits, there
is a unique check digit a0 that may be added to ensure the satis-
faction of (6.34).

(d) Suppose that a full 13-digit sequence

a12
‖ a11 a10 . . . a6

‖ a5 . . . a2 a1 a0
‖

satisfying (6.34) was placed on a product, but that a certain digit
ak (with 12 ≥ k ≥ 0) becomes illegible. Show that the value of ak

may be recovered from the 12 remaining legible digits. (Hint: In
the ring Z/10, the element 3 is a unit.)
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(e) Explain why the error-correction capability described in (d) above
is weaker than that given by the error-correcting codes introduced
in Section 5.8.

(f) Suppose that a full 13-digit sequence

a12
‖ a11 a10 . . . a6

‖ a5 . . . a2 a1 a0
‖

satisfying (6.34) is being reported manually, but a keyboard error
transposes two (distinct) adjacent digits ak+1 ak (with 12 > k ≥ 0),
so that they appear in the order ak ak+1 instead. Show that a check
of the validity of (6.34) for the erroneous sequence

a12 . . . ak+2
←→
ak ak+1 ak−1 . . . a0

will indicate that an error occurred, unless |ak+1 − ak| = 5.

(g) The International Standard Book Number (ISBN) is a 10-digit code

a10 a9 . . . a3 a2 - a1 (6.35)

in which the final digit a1 is a check digit. The 9 information digits
a10, . . . , a2 are actually decimal, but they are interpreted as if they
were undecimal (base 11). Working in the ring of integers Z/11

modulo 11, the ISBN (6.35) is required to satify the condition

10∑

k=1

k · ak = 0 . (6.36)

Show that for each sequence

a10 a9 . . . a3 a2

of information digits, there is a unique element a1 of Z/11 that
may be appended to ensure that (6.36) is satisfied. (The Roman
numeral X is used as a single undecimal digit for 10.)

(h) Confirm that ISBN 981-02-4942-X satisfies the condition (6.36).

(i) Confirm that the ISBN of this book satisfies the condition (6.36).

(j) Compute the full ISBN when the sequence of information digits is
83-89656-20.

(k) Show that if a single digit in a valid ISBN is illegible, it can be
recovered uniquely from the remaining 9 legible digits.

(l) Investigate the ability of ISBN encoding to recognize the occurrence
of a transposition error, as discussed in (e) above for the EAN code.
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3. Board games. Certain board games are played with two dice. The
board is marked with squares. When it is their turn, players move their
markers forward between 2 and 12 steps, according to the total of the
two numbers between 1 and 6 shown on each die.

0 1 2 3 4 5 6 7 8 9 10 11 12

FIGURE 6.2: Part of a board game.

During the course of the game, players frequently end up with their
markers on the square labeled 0 in Figure 6.2. To help win the game, it
is useful to be able to predict which of the squares 2 through 12 these
players will reach after their next move.

Assuming that a die is fair, each of the six possible numbers 1, 2, . . . ,
6 on its faces is equally likely. Thus the chance of throwing any given
number is 1

6 . However, when two dice are thrown, the possible totals 2,
3, . . . , 12 are not equally likely. The chances of throwing a given total
may be computed within the ring R[X] of real polynomials.

(a) Let

p1(X) = p2(X) =
1
6
X6 +

1
6
X5 +

1
6
X4 +

1
6
X3 +

1
6
X2 +

1
6
X ,

so the chance of throwing r with die i (for i = 1, 2) is given by the
coefficient of Xr in the polynomial pi(X).

(b) Show that the chance of throwing a total of t with the two dice is
given by the coefficient of Xt in the product polynomial

p1(X) · p2(X).

(c) Compute the product p1(X) · p2(X).
(d) If a player starts with their marker on square 0 in Figure 6.2, on

which square are they most likely to land at their next turn?
(e) If a player starts with their marker on square 0 in Figure 6.2, on

which squares are they least likely to land at their next turn?
(f) By what factor are they more likely to land on the most likely

square, as opposed to one of the least likely squares?
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4. Finite support. Let X be a set, and let (R, +, ·) be a ring. Consider
a function

f : X → R .

The set
supp f = {x in X | f(x) 6= 0}

of elements of X at which the function f takes a nonzero value is called
the support of f . The function f : X → R is said to have finite support
if the set supp f is finite. Let f : X → R and g : X → R be functions
with finite support.

(a) Show that the zero constant function has empty support.

(b) Show that supp (f−g) is a subset of the union of supp f and supp g.

(c) Show that supp (f · g) is a subset of the intersection of supp f and
supp g.

(d) Conclude that the set RX
0 of functions f : X → R with finite

support forms a nonunital subring of the ring of R-valued functions
on X.

(e) If X is infinite and R is unital, show that the set RX
0 of functions

f : X → R with finite support does not form a unital subring of
the ring of R-valued functions on X.

6.11 Notes

Section 6.1

Many authors do not distinguish explicitly between unital and nonunital
rings, leaving the determination to the context.

Section 6.3

C.F. Gauss was a German mathematician and physicist who lived from
1777 to 1855.

Section 6.9

F.G. Frobenius was a German mathematician who lived from 1849 to 1917.



Chapter 7

FIELDS

Amongst all rings, the ring Z of integers and the ring R of real numbers have
special properties that make them easy to manipulate. For example, nonzero
integers may be canceled from equations, and nonzero real numbers have
multiplicative inverses. The special properties are formalized in the concepts
of “integral domain” and “field.”

7.1 Integral domains

In a general ring R, let R× denote the set

{x in R | x 6= 0}

of nonzero elements of R. The concepts of “integral domain” and “field”
address the algebraic properties of the set R×.

DEFINITION 7.1 (Integral domains.) A ring (R,+, ·) is said to be
an integral domain (abbreviated as: ID) if it is both commutative and unital,
and if the set R× of nonzero elements of R forms a monoid (R×, ·, 1) under
the multiplication of the ring.

Example 7.2 (The ring of integers.)
The ring Z of integers is the prototypical integral domain.

Example 7.3 (The ring of real numbers.)
The ring R of real numbers forms an integral domain.

Example 7.4 (A product ring.)
Consider the nonzero elements (1, 0) and (0, 1) in the direct product Z/2×Z/2.
Then

(1, 0) · (0, 1) = (1 · 0, 0 · 1) = (0, 0) ,

so the commutative, unital ring Z/2 × Z/2 is not an integral domain.

157
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Example 7.5 (Integers modulo 3.)
The multiplication table for the set Z/×3 of nonzero elements of the ring Z/3

of integers modulo 3 is as follows:

· 1 2

1 1 2

2 2 1

Thus Z/3 forms an integral domain.

Example 7.6 (Integers modulo 4.)
The multiplication table for the set Z/×4 of nonzero elements of the ring Z/4

of integers modulo 4 is as follows:

· 1 2 3

1 1 2 3

2 2 0 2

3 3 2 1

Note that 2 · 2 = 0: The set Z/×4 of nonzero elements of Z/4 is not closed
under multiplication. Thus Z/4 does not form an integral domain.

The commutative, unital rings of Examples 7.4 and 7.6 fail to be integral
domains because of the behavior of special elements: 2 in Z/4, or (1, 0) and
(0, 1) in Z/2 ⊕ Z/2. In each case, 0 is a multiple of these nonzero elements.

DEFINITION 7.7 (Zero divisors.) In a ring (R,+, ·), a given element
r is said to be a zero divisor if:

(a) r is nonzero;

(b) There is a nonzero element s of R with

r · s = 0 or s · r = 0 . (7.1)
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Integral domains are then characterized amongst all commutative, unital,
and nontrivial rings by the absence of zero divisors.

PROPOSITION 7.8 (Integral domains and zero divisors.)
Let R be a commutative, unital, nontrivial ring. The following conditions are
equivalent:

(a) R is an integral domain;

(b) R has no zero divisors.

PROOF (a) ⇒ (b): Suppose that R is an integral domain. The existence
of nonzero elements r and s with (7.1) would violate the closure of the monoid
(R×, ·, 1) under multiplication.

(b) ⇒ (a): Suppose that R has no zero divisors. Since R is unital and nontriv-
ial, the set R× contains the identity element 1. The absence of zero divisors
then guarantees that R× forms a submonoid of (R, ·, 1).

REMARK 7.9 In Proposition 7.8, the hypothesis of nontriviality is nec-
essary. The trivial ring R is commutative, unital, and devoid of zero divisors,
but the empty set R× does not form a monoid.

In Proposition 4.53 (page 85), it was observed that elements of a group may
be canceled from equations. In integral domains, nonzero elements may also
be canceled, even though the multiplicative structure does not form a group.

PROPOSITION 7.10 (Cancellation in integral domains.)
Let R be an integral domain, with elements a, b1, b2. Suppose that a is

nonzero. If
a · b1 = a · b2 , (7.2)

then b1 = b2.

PROOF If (7.2) holds, then a · b1 − a · b2 = 0. The left distributive law
now yields

a · (b1 − b2) = 0 . (7.3)

Since a is nonzero, and R has no zero divisors, the factor b1− b2 in (7.3) must
be zero. Thus b1 = b2.

Recall that integral domains are commutative, by definition. Thus given the
cancellation from the left in Proposition 7.10, there is no need for a separate
discussion of cancellation from the right, as in Proposition 4.53(b) for groups
(page 85).
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7.2 Degrees

For a ring R, consider a polynomial

p(X) = pnXn + pn−1X
n−1 + · · ·+ p2X

2 + p1X + p0 (7.4)

in the polynomial ring R[X]. Suppose that the coefficient pn is nonzero.
It is then called the leading coefficient of p(X), and the integer n is called
the degree deg p or deg p(X) of the polynomial p(X). In particular, nonzero
constant polynomials p0 — elements of the ring R — have degree 0. The
zero constant polynomial 0 is deemed to have leading coefficient 0, and degree
−∞. For any natural number n, we have

−∞+ n = −∞ = n + (−∞) (7.5)

and −∞ < n, so max(−∞, n) = n. Also −∞+ (−∞) = −∞.
The behavior of the degree of polynomials under the algebraic operations

on R[X] is described as follows.

PROPOSITION 7.11 (Inequalities for degrees.)
Let R be a ring. Consider polynomials p(X) and q(X) over R.

(a) deg
(
p(X) + q(X)

) ≤ max
(
deg p(X),deg q(X)

)
;

(b) deg
(
p(X) · q(X)

) ≤ deg p(X) + deg q(X) .

PROOF If at least one of p(X), q(X) is zero, say p(X) = 0, then (a)
reduces to the equality deg q(X) = max

( −∞, deg q(X)
)

= deg q(X), while
(b) reduces to the equality −∞ = −∞+ deg q(X). Otherwise, suppose that

p(X) = pnXn + pn−1X
n−1 + . . .

and
q(X) = qmXm + qm−1X

m−1 + . . .

with pn 6= 0 and qm 6= 0. Without loss of generality, suppose n ≥ m — if not,
interchange the roles of p(X) and q(X).

(a): Since p(X) + q(X) = (pn + qn)Xn + (pn−1 + qn−1)Xn−1 + . . . if n = m,
and p(X) + q(X) = pnXn + . . . if n > m, we have

deg
(
p(X) + q(X)

) ≤ n = max
(
deg p(X), deg q(X)

)
,

proving that (a) holds.
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(b): Since

p(X) · q(X) =
(
pnXn + pn−1X

n−1 + . . .
) · (qmXm + qm−1X

m−1 + . . .
)

= pnqmXn+m + (pn−1qm + pnqm−1)Xn+m−1 + . . . , (7.6)

we have
deg

(
p(X) · q(X)

) ≤ n + m = deg p(X) + deg q(X)

proving that (b) holds.

Example 7.12 (Strict inequality for degree of sum.)
Consider the polynomials p(X) = X2 + 1 and q(X) = −X2 + 2X in R[X].

Both have degree 2, but deg
(
p(X) + q(X)

)
= deg(2X + 1) = 1. Thus the

inequality in Proposition 7.11(a) may be strict.

Example 7.13 (Strict inequality for degree of product.)
Consider the polynomials p(X) = 2X2 and q(X) = 2X2 +1 in Z/4[X]. Both
of the polynomials p(X) and q(X) have degree 2, but deg

(
p(X) · q(X)

)
=

deg(2X2) = 2 < deg p(X) + deg q(X). Thus again in Proposition 7.11(b), the
inequality may be strict.

For polynomials over integral domains, the inequality in Proposition 7.11(b)
becomes equality.

COROLLARY 7.14 (Equality for degree of product over an ID.)
Let p(X) and q(X) be elements of the ring R[X] of polynomials over an

integral domain R. Then

deg
(
p(X) · q(X)

)
= deg p(X) + deg q(X) . (7.7)

In particular, the ring of polynomials over an integral domain is itself an
integral domain.

PROOF If p(X) or q(X) is zero, it was already seen that Proposition 7.11(b)
becomes equality. Otherwise, both leading coefficients pn of p(X) and qm of
q(X) are nonzero. Since R is an integral domain, it follows that their product
pnqm is nonzero. By (7.6), this nonzero product is the leading coefficient of
p(X) · q(X), so

deg
(
p(X) · q(X)

)
= n + m = deg p(X) + deg q(X)

as required for (7.7). Finally, if p(X) and q(X) are nonzero, their degrees are
natural numbers. Then by (7.7), the degree deg

(
p(X) ·q(X)

)
is also a natural

number, so that p(X) · q(X) 6= 0.
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7.3 Fields

In the commutative, unital ring R of real numbers, the set R× of nonzero
elements forms a group (R×, ·, 1) under multiplication. In other words, each
nonzero real number has a multiplicative inverse: The group of units R∗ of
the full monoid (R, ·, 1) is the set R× of nonzero reals.

DEFINITION 7.15 (Fields, field homomorphisms.) A ring (R,+, ·)
is said to be a field if it is both commutative and unital, and if the set R× of
nonzero elements of R forms a group (R, ·, 1) under the multiplication of the
ring. A field homomorphism is a unital ring homomorphism between fields.

Note the distinction between integral domains and fields. Let (R, +, ·) be
a commutative, unital ring. For R to be an integral domain, the set R× of
nonzero elements has to form a monoid under multiplication. For R to be a
field, R× has to satisfy the stronger requirement of being a group. The ring
(Z, +, ·) of integers is an integral domain, but it is not a field, since 2 does not
have a multiplicative inverse in the set Z× of nonzero integers. On the other
hand, 2 does have a multiplicative inverse 2−1 in the field R of real numbers.

Do not confuse additive inverses with multiplicative inverses.
Each element r of a ring R has an additive inverse −r in the
additive group (R, +, 0) of the ring (R, +, ·), but unless r is
a nonzero element of a field R, there is no guarantee of a
multiplicative inverse r−1 for r.

For finite commutative, unital rings, there is no distinction between integral
domains and fields.

PROPOSITION 7.16 (Finite integral domains.)
A finite integral domain is a field.

PROOF Let R be a finite integral domain. By definition, the set R×

of nonzero elements of R forms a monoid (R×, ·, 1) under multiplication. It
remains to be shown that each nonzero element r of R is invertible.

Consider the set rN = {1, r1, r2, r3, . . . , rm, . . . , rn, . . . } of powers of r. Since
rN is a subset of the finite set R× of nonzero elements of R, there are natural
numbers m < n such that rm = rn. This equation may be written in the form

rm · 1 = rm · (r · rn−m−1
)
.

Cancellation within the integral domain R (Proposition 7.10) then yields the
equation 1 = r · rn−m−1, so that r is invertible.
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Example 7.17 (The fields Z/p.)
Let p be a prime number. The nontrivial commutative, unital ring Z/p of

integers modulo p is an integral domain. Indeed, if (a + pZ) · (b + pZ) = pZ
for integers a and b, the prime number p divides the product ab. It follows
that p divides a or p divides b, so that at least one of the factors a + pZ or
b + pZ is zero. By Proposition 7.16, it follows that the finite integral domain
(Z/p,+, ·) is a field. [For an alternative argument showing that Z/p is a field,
see Exercise 10(c) below, and Example 6.30 on page 138.]

Example 7.18 (The field Z/3[i].)
Consider the commutative, unital ring Z/3[i] of 2× 2 matrices

[
x −y
y x

]
(7.8)

with entries from the field Z/3 (compare Example 6.17, page 133). The ring
has 9 elements, since there are 3 independent choices from Z/3 for each of the
entries x and y of a matrix (7.8).

The determinant of the matrix (7.8) is x2 +y2. Now in Z/3, we have 02 = 0
and 12 = 22 = 1, so x2 and y2 lie in the set {0, 1}. Furthermore, the only
solution of x2 + y2 = 0 is x = y = 0. Thus nonzero matrices (7.8) have
nonzero determinants. Since the determinant of a product of these matrices
is the product of their individual determinants, it follows that Z/3[i] is a finite
integral domain, and hence is a field.

Example 7.19 (Complex numbers.)
The ring C of complex numbers forms a field — compare (6.32) and Study

Project 1 in Chapter 6.

Example 7.20 (Bit strings of length 2.)
In Example 7.6, it was seen that the ring Z/4 of integers modulo 4 did not even
form an integral domain, let alone a field. Nevertheless, there are fields with
4 elements. Consider the set (Z/2)2 of bit strings of length 2 (Example 4.35,
page 78). This set forms a group with componentwise addition, an isomorphic
copy of the Klein 4-group V4. With multiplication ∗ as given in the table of
Figure 7.1, the set of length 2 bit strings forms a field

(
(Z/2)2, +, ∗). Certainly

the nonzero elements form a 3-element cyclic group under the multiplication.
It remains to verify the distributivity, to check that the left multiplication
(6.3) by each element r is an additive group homomorphism. This is trivial
for r = 00 and r = 01. For r = 10, the left multiplication is an isomorphism
from the additive group to itself, with left multiplication by 11 as the inverse
isomorphism (Exercise 12).
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∗ 00 01 10 11

00 00 00 00 00
01 00 01 10 11
10 00 10 11 01
11 00 11 01 10

FIGURE 7.1: Multiplication table of a 4-element field.

7.4 Polynomials over fields

If F is a field, the ring of polynomials F [X] over F in the indeterminate X
has some special properties. Since fields are integral domains, Corollary 7.14
shows that F [X] is an integral domain. In fact, F [X] behaves even more like
the ring of integers: It admits a division algorithm, much like the Division
Algorithm for Z (Section 1.4).

THEOREM 7.21 (Division Algorithm for polynomials over fields.)
Let F be a field. Let

d(X) = dmXm + · · ·+ d1X + d0

be a nonzero polynomial (the divisor) in f [X], with leading coefficient dm 6= 0.
Then for each polynomial

a(X) = anXn + · · ·+ a1X + a0

(a dividend) in F [X], there is a unique polymomial q(X) (the quotient) in
F [X], and a unique polynomial r(X) (the remainder) in f [X], such that

deg r(X) < deg d(X) (7.9)

and
a(X) = d(X)q(X) + r(X) . (7.10)

PROOF The proof proceeds by induction on the degree n of the dividend.

Induction Basis: If deg a(X) < deg d(X), then (7.9) and (7.10) specify
q(X) = 0 and r(X) = a(X) uniquely.

Induction Step: Suppose that the Division Algorithm has been established
for all dividends of degree less than the degree n of the given dividend a(X).
In particular, suppose that

n = deg a(X) ≥ deg d(X) = m
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(since otherwise, the Induction Basis applies). Consider the polynomial

α(X) = a(X)− anb−1
m Xn−md(X) .

The coefficient of Xn in α(X) is an − anb−1
m bm = 0, so deg α(X) < deg a(X).

By the induction hypothesis, there are polynomials γ(X) and r(X) with
deg r(X) < deg d(X) and

α(X) = d(X)γ(X) + r(X) .

Then
a(X) = d(X)

(
anb−1

m Xn−m + γ(X)
)

+ r(X) ,

yielding (7.10) as required, with q(X) = anb−1
m Xn−m + γ(X).

Uniqueness: Suppose

a(X) = d(X)q1(X) + r1(X) = d(X)q2(X) + r2(X)

with deg r1(X), deg r2(X) < deg d(X). Then

r1(X)− r2(X) = d(X)
(
q2(X)− q1(X)

)
,

as a multiple of d(X) with degree less than deg d(X), must be zero. Thus
r1(X) = r2(X) and q1(X) = q2(X).

The induction used to prove Theorem 7.21 yields a recursive procedure,
Long Division, for dividing one polynomial by another in F [X]. As an ex-
ample, consider the division of 3X3 − X2 + 4 by 2X2 + 1 in Z/5[X]. The
calculation is displayed as follows:

2X2 + 1
) 4X + 2

3X3 −X2 + 4
3X3 + 4X

4X2 + X + 4
4X2 + 2

X + 2

At the first step, the divisor 2X2 +1 is multiplied by 4X to obtain 3X3 +4X.
This multiple is subtracted from the dividend 3X3−X2+4 to yield 4X2+X+4.
Next, the divisor 2X2 + 1 is multiplied by 2 to obtain 4X2 + 2. This multiple
is subtracted from the intermediate dividend 4X2 + X + 4 to yield X + 2.
Since the degree of X +2 is less than the degree of the divisor, the polynomial
X + 2 is the remainder. Thus the equation (7.10) takes the form

3X3 −X2 + 4 = (2X2 + 1)(4X + 2) + (X + 2)

for this example.
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For linear divisors of the form (X−c), the results of division are particularly
transparent.

PROPOSITION 7.22 (Evaluating the remainder.)
Let f(X) be a polynomial over a field F . Then for an element c of F , the

Division Algorithm yields

f(X) = (X − c)q(X) + f(c) (7.11)

for some quotient q(X).

PROOF The remainder

f(X)− (X − c)q(X) (7.12)

after division by the polynomial (X − c) must have degree less than 1, so it is
some constant k in F . The constant is obtained as k = f(c)−(c−c)q(c) = f(c)
on evaluating (7.12) at the field element c.

COROLLARY 7.23 (Roots and linear divisors.)
In F [X], a polynomial f(X) has a field element c as a root if and only if the
linear polynomial (X − c) divides f(X).

Example 6.42 (page 146) indicated that the polynomial X2 − 1 of degree
2 in Z/8[X] has (at least) 4 roots in the ring Z/8. The final corollary of the
Division Algorithm shows that such a surfeit of roots cannot happen with
nonzero polynomials over fields.

PROPOSITION 7.24 (When degrees bound the number of roots.)
Let f(X) be a nonzero polynomial over a field F . Then the number of roots

of f(X) in F does not exceed deg f(X).

PROOF The proof proceeds by induction on the degree. The induction
basis comprises the nonzero constant polynomials, which have degree 1, and
no roots. For the induction step, consider a polynomial f(X) of degree n > 0,
and suppose that no polynomial of degree n − 1 has more than n − 1 roots.
Suppose that f(X) has a root, say c, in F . By Corollary 7.23,

f(X) = (X − c)q(X) (7.13)

for some polynomial q(X) of degree n− 1. If b is a root of f(X) distinct from
c, then evaluation of (7.13) at b gives 0 = f(b) = (b−c)q(b) . Since (b−c) 6= 0,
it follows that q(b) = 0. By the induction hypothesis, there are at most n− 1
possible such roots b distinct from c. Thus f(X) has at most n roots.
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7.5 Principal ideal domains

Section 7.4 shows that, like the ring of integers, the ring of polynomials
F [X] over a field F admits a Division Algorithm. It is helpful to formalize
the similarities between the rings Z and F [X].

DEFINITION 7.25 (PID.) Let R be a commutative, unital ring.

(a) An ideal J of R is described as principal if it is the set dR of multiples
of a single element d of R.

(b) The ring R is said to be a principal ideal domain (abbreviated as: PID)
if it is an integral domain in which each ideal is principal.

Example 7.26 (Integers form a PID.)
As each ideal of Z has the form dZ for some natural number d (compare

Example 6.31, page 138), the integral domain Z is a principal ideal domain.

THEOREM 7.27 (A polynomial ring over a field is a PID.)
The ring F [X] of polynomials over a field F is a principal ideal domain.

PROOF Since the field F is an integral domain, Corollary 7.14 shows that
F [X] is also an integral domain. The trivial ideal 0F [X] is principal. Consider
a nontrivial ideal J of F [X], containing a nonzero element n(X). Define the
subset

S = {deg f(x) | 0 6= f(X) in J} (7.14)

of the set N of natural numbers. Since S contains deg n(X), it is nonempty.
The Well-Ordering Principle shows that S contains a least element, say the
degree deg d(X) of a nonzero element d(X) of J . It will be shown that J is
the principal ideal d(X)F [X].

Since d(X) is an element of J , and J has the absorptive property, the set
d(X)F [X] of multiples of d(X) is a subset of J . Conversely, consider an
element a(X) of J . It will be shown that a(X) is a multiple of d(X). The
Division Algorithm yields

a(X) = d(X)q(X) + r(X) (7.15)

with deg r(X) < deg d(X). But r(X), as the difference a(X) − d(X)q(X) of
the elements a(X) and d(X)q(X) of J , is itself an element of J . Since the
degree of d(X) is not greater than the degree of any other nonzero element
of J , it follows that r(X) is zero. Thus (7.15) actually expresses a(X) as a
multiple of d(X).
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A polynomial over a unital ring R is said to be monic if its leading coefficient
is 1. Suppose that J is a nontrivial ideal of the ring F [X] of polynomials over
a field F . In the proof of Theorem 7.27, let M denote the set of all nonzero
polynomials d(X) in J with deg d(X) as the least element of the set S in (7.14).
Then amongst the polynomials in the set M , just one is monic (Exercise 17).

DEFINITION 7.28 (Minimal polynomial of a nontrivial ideal.) A
monic polynomial d(X) is called the minimal polynomial of the ideal d(X)F [X].

Example 7.29 (Complex numbers.)
Consider the evaluation homomorphism

R[X] → C; p(X) 7→ p(i)

to the field of complex numbers from the ring of polynomials over the reals.
The polynomial X2 +1 lies in the kernel ideal, and has minimal degree there.
(Indeed, Proposition 7.22 shows that the quotient of R[X] by the ideal of
multiples of a linear polynomial would be isomorphic to R.) Thus the kernel
ideal is the set (X2 +1)R of multiples of the minimal polynomial X2 +1. The
First Isomorphism Theorem yields

R[X]/(X2 + 1)R[X] → C; (7.16)

p(X) + (X2 + 1)R[X] 7→ p(i)

as an isomorphism of the field of complex numbers with the quotient of the
ring of real polynomials by the ideal of multiples of X2 + 1.

Example 7.30 (The bit-string field.)
Consider the evaluation homomorphism

Z/2[X] → (Z/2)2; p(X) 7→ p(10)

to the bit-string field of Example 7.20 from the ring of polynomials over the
field of integers modulo 2. The minimal polynomial of the kernel ideal is
X2 + X + 1, since 102 + 10 + 1 = 11 + 10 + 01 = 0. Thus

Z/2[X]/(X2 + X + 1)Z/2[X] → (Z/2)2; (7.17)

p(X) + (X2 + X + 1)Z/2[X] 7→ p(10)

is an isomorphism of fields.

In order to work with quotient rings F [X]/J of rings of polynomials over a
field F , it is useful to establish a representation of their elements.
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PROPOSITION 7.31 (Representing elements of F [X]/J .)
Let J be a nonzero ideal in the ring of polynomials over a field F . Let d(X)

be the minimal polynomial of J , with deg d(X) = n. Then the map

Fn → F [X]/J ; (7.18)

(rn−1, rn−2, . . . , r1, r0) 7→ rn−1X
n−1 + rn−2X

n−2 + · · ·+ r1X + r0 + J

is an isomorphism of additive groups.

PROOF The map (7.18) is certainly a group homomorphism, since both
Fn and F [X] have their additive group structures defined componentwise.
Now suppose that the n-tuple (rn−1, rn−2, . . . , r1, r0) lies in the kernel of
(7.18). Then the polynomial

r(X) = rn−1X
n−1 + rn−2X

n−2 + · · ·+ r1X + r0 (7.19)

is a multiple of d(X). Since deg r(X) < n = deg d(X), it follows that the
polynomial r(X) is zero, so the corresponding n-tuple

(rn−1, rn−2, . . . , r1, r0)

is also zero. Thus the group homomorphism (7.18) is injective, since its group
kernel is zero. Finally, consider an arbitrary coset a(X) + J in the quotient
F [X]/J . Using the Division Algorithm to write

a(X) = d(X)q(X) + r(X)

with deg r(X) < n, say r(X) written as in (7.19), the coset

a(X) + J = r(X) + J

appears as the image of the n-tuple (rn−1, rn−2, . . . , r1, r0) under (7.18). Thus
the map (7.18) is surjective.

Example 7.32 (Complex numbers.)
With F = R and d(X) = X2 + 1, the composite of the group isomorphism

(7.18) with the field isomorphism (7.16) is the map

R2 → C; (r1, r0) 7→ r0 + r1i

— compare (6.29).

Example 7.33 (The bit-string field.)
Consider F = Z/2 and d(X) = X2 +X +1. Then the composite of the group
isomorphism (7.18) with the field isomorphism (7.17) reduces to the identity
map on the set (Z/2)2 of pairs or length 2 bit strings.
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7.6 Irreducible polynomials

An integer p > 1 was defined to be irreducible if the only expressions of
p as a product p = ab of positive integers a and b are when a = 1 or b = 1
(1.30). Example 7.17 then showed that the quotient Z/pZ of the principal
ideal domain of integers by the ideal of multiples of an irreducible element
p was actually a field. (Recall that the terms “prime” and “irreducible” are
synonymous for positive integers, by Proposition 1.11.) This section pursues
the analogy between the principal ideal domains Z and F [X] for a field F .
The definition of irreducibility is extended to polynomials, and irreducible
polynomials are then used to construct new fields. Polynomials which are not
irreducible (according to Definition 7.34 below) are described as reducible.
Reducible polynomials are nonconstant polynomials that admit a nontrivial
factorization.

DEFINITION 7.34 (Irreducible polynomials.) Let F be a field. A
nonconstant polynomial p(X) in F [X] is said to be irreducible (over F ) if

p(X) = a(X)b(X) implies
(

deg a(X) = 0 or deg b(X) = 0
)

(7.20)

for polynomials a(X) and b(X) in F [X].

Example 7.35 (The polynomial X2 + 1 over R and C.)
The polynomial X2+1 is irreducible over the field R of real numbers. Indeed,
if X2 +1 admitted a nontrivial factorization, the factors would be linear, and
then X2 + 1 would have real roots, according to Corollary 7.23. However,
the square of each real number is nonnegative, so there are no real numbers
r with r2 + 1 = 0.

On the other hand, the polynomial X2 + 1 is reducible over the field of
complex numbers, admitting the nontrivial factorization

X2 + 1 = X2 − i2 = (X + i)(X − i)

in the polynomial ring C[X].

In general, it can be very tricky to decide whether a given polynomial is
irreducible or not. Fortunately, there is a fairly simple criterion for quadratic
and cubic polynomials.

PROPOSITION 7.36 (Irreducibility of quadratics and cubics.)
Let F be a field, and let p(X) be a polynomial in F [X] with degree 2 or 3.

Then p(X) is irreducible if and only if it has no roots in F .
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PROOF If p(X) is reducible and admits a nontrivial factorization, then
one of the factors is linear, say

p(X) = (a1X + a0) · b(X)

with a0 and (nonzero) a1 in F , and b(X) in F [X]. Then

p
(− a−1

1 a0

)
=

(
a1 · (−a−1

1 a0) + a0

) · b(a−1
1 a0

)
= 0 ,

so p(X) has the root −a−1
1 a0 in F .

Conversely, suppose p(X) has a root c in F . Then Corollary 7.23 shows
that p(X) has a linear factor, and therefore is reducible.

Example 7.37 (An irreducible quadratic.)
The polynomial p(X) = X3 +X +1 is an irreducible element of Z/2[X], since
p(0) = 0 + 0 + 1 = 1 6= 0 and p(1) = 1 + 1 + 1 = 1 6= 0.

Example 7.38 (Failure of the test for quartics.)
Proposition 7.36 does not work for polynomials p(X) of degree larger than

3. For instance, the reducible polynomial

(X2 + 1)(X2 + 1)

in R[X] has no real roots.

The main use of irreducible polynomials is to bootstrap the construction of
new fields from a given starter field.

THEOREM 7.39 (The Bootstrap Theorem.)
Let F be a field, and let p(X) be an irreducible polynomial in F [X]. Let J

be the ideal p(X)F [X] of multiples of p(X) in F [X]. Then the quotient ring
F [X]/J is a field.

PROOF Since F [X] is commutative and unital, so is its quotient F [X]/J .
It remains to be shown that each nonzero element f(X) + J of the quotient
actually has an inverse g(X) + J , so that

(
f(X) + J

) · (g(X) + J
)

= 1 + J .
Now f(X) + p(X)F [X] nonzero means that

f(X) is not a multiple of p(X) . (7.21)

Consider the ideal f(X)F [X] + p(X)F [X] of F [X]. By Theorem 7.27, F [X]
is a principal ideal domain. Thus there is some element a(X) of F [X] with

f(X)F [X] + p(X)F [X] = a(X)F [X] . (7.22)
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In particular, the element p(X) = f(X) · 0 + p(X) · 1 of the left-hand side of
(7.22), as an element of the right-hand side of (7.22), is some multiple

p(X) = a(X)b(X)

of a(X). Since p(X) is irreducible, one of a(X) or b(X) is a nonzero constant.
If b(X) is the nonzero constant b0, then a(X) = p(X)b−1

0 . But we would then
have f(X) = f(X) · 1 + p(X) · 0 as an element of

f(X)F [X] + p(X)F [X] = a(X)F [X] = p(X)b−1
0 F [X] = p(X)F [X] .

This would give f(X) as a multiple of p(X), contradicting (7.21). Thus it
is actually a(X) which is the nonzero constant, say a0. Now the identity
polynomial 1 = a0 · a−1

0 = a(X) · a−1
0 is an element of (7.22), so there are

polynomials g(X) and q(X) with 1 = f(X)g(X)+p(X)q(X) . Then, recalling
the definition of the multiplication in quotient rings, we have

(
f(X) + J

) · (g(X) + J
)

= f(X)g(X) + J

= f(X)g(X) + p(X)F [X] = 1 + p(X)F [X]

as required.

Example 7.40 (An 8-element field.)
By Example 7.37, there is an irreducible polynomial p(X) = X3 +X +1 over
the field Z/2. Theorem 7.39 then shows that a field is given by the quotient
Z/2[X]

/
J of the polynomial ring Z/2[X] over the ideal J = p(X)Z/2[X] of

multiples of p(X). By Proposition 7.31, this field has 8 elements, and each
coset may be represented by a polynomial of degree at most 2. It is instructive
to compute the successive powers of the coset X + J :

X3 + J = X3 + (X3 + X + 1) + J = X + 1 + J ;

X4 + J = X ·X3 + J = X(X + 1) + J = X2 + X + J ;

X5 + J = X · (X2 + X) + J = X3 + X2 + J = X2 + X + 1 + J ;

X6 + J = X · (X2 + X + 1) + J = X3 + X2 + X + J = X2 + 1 + J ;

X7 + J = X · (X2 + 1) + J = X3 + X + J = 1 + J .

Note that the multiplicative group of nonzero elements of the field is cyclic,
generated by the coset X + J . Thus the table of powers of X + J may be
used to compute products and inverses in the field, while Proposition 7.31
indicates how to compute sums. For example, we have

X5 + X6 = (X2 + X + 1) + (X2 + 1) = X

and
(X + 1) · (X2 + X + 1) = X3 ·X5 = X8 = X7+1 = X ,

using the list of powers (and omitting explicit mention of the ideal J).
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7.7 Lagrange interpolation

Field structures on a set are very useful in a wide variety of contexts. In this
section, we discuss one typical application, to the specification of functions.
Suppose that F is a field. For a natural number n and distinct elements x0,
x1, . . . , xn of F , it is desired to construct a function f : F → F taking a
particular function value

f(xi) = yi

in F for each 0 ≤ i ≤ n (compare Figure 7.2). The function should be easy
to specify, and easy to compute, even when the set F is too large for a simple
table look-up to be feasible.

-
F

6
F

x0

s
(x0, y0)

x1

s
(x1, y1)

xn

s(xn, yn)

FIGURE 7.2: Specifying a function.

To design a function with the desired properties, fix an index 0 ≤ j ≤ n, and
consider the simpler problem of finding a function δxj satsifying the following
specification:

δxj (xi) =

{
1 if i = j ;
0 if i 6= j .

Such a function is known as a (Kronecker) delta function. It is implemented
as the polynomial

δxj (X) =
(X − x0) . . . (X − xj−1)(X − xj+1) . . . (X − xn)
(xj − x0) . . . (xj − xj−1)(xj − xj+1) . . . (xj − xn)

. (7.23)

of degree n. Note that, since xj is distinct from all the other elements x0,
. . . , xj−1, xj+1, . . . , xn, the denominator of (7.23) represents a nonzero field
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element, which thus has an inverse. Note further that for each index i distinct
from j, the factor (X − xi) in the numerator of (7.23) vanishes at xi, so
δxj (xi) = 0 in this case. Finally, note that each factor

(X − xi)
(xj − xi)

(with i 6= j) takes the value (xj − xi)(xj − xi)−1 = 1 at xj , so δxj (xj) = 1, as
required.

The function f : F → F can now be implemented by evaluating the poly-
nomial

f(X) =
n∑

j=0

yj · δxj (X) , (7.24)

a sum of constant multiples of the polynomials (7.23). The polynomial (7.24)
is known as the Lagrange interpolant for the specified function values. Note
that, for each 1 ≤ i ≤ n, we have

f(xi) =
n∑

j=0

yj · δxj (xi)

=
i−1∑

j=0

yj · δxj (xi) + yi · δxi(xi) +
n∑

j=i+1

yj · δxj (xi)

= 0 + yi · 1 + 0 = yi

as required. The result may be summarized as follows.

THEOREM 7.41 (Lagrange interpolation.)
Suppose that x0, x1, . . . , xn are n + 1 distinct elements of a field F . Then

for any elements y0, y1, . . . , yn of F , there is a polynomial f(X) of degree at
most n over F such that f(xi) = yi for 0 ≤ i ≤ n.

Example 7.42 (Interpolants of unexpectedly low degree.)
A Lagrange interpolant for n + 1 function values may have a degree less

than n. For instance, the Lagrange interpolant to the identity function on the
3-element field Z/3 is X (Exercise 23).

COROLLARY 7.43 (Self-maps of finite fields are polynomials.)
Let F be a finite field. Then each function f : F → F may be implemented

as the evaluation of a polynomial f(X) over F .

The property enunciated in Corollary 7.43 is sometimes expressed by the
statement that finite fields are polynomially complete.
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7.8 Fields of fractions

A final method of constructing new fields, this time infinite, mimics the
construction of the rationals from the integers (Section 3.3). Let D be an
integral domain. Consider the set

X =
{[

n m
0 n

] ∣∣∣∣ n,m in D, n 6= 0
}

of matrices over D. Note that if D = Z, the top row of a matrix from X
corresponds to a solid dot in Figure 3.1.

A relation R is defined on the set X by
[
n1 m1

0 n1

]
R

[
n2 m2

0 n2

]
if and only if

∣∣∣∣
n1 m1

n2 m2

∣∣∣∣ = 0 (7.25)

— compare (3.6). As in Proposition 3.8, the relation R is seen to be an
equivalence relation on the set X. (The properties of the ring of integers
that were used in the proof of Proposition 3.8 are all properties that have
been abstracted into the concept of an integral domain.) Define an addition
operation on the set XR of equivalence classes by

[
n1 m1

0 n1

]

R

+
[
n2 m2

0 n2

]

R

=
([

n1 m1

0 n1

]
·
[
n2 m2

0 n2

])

R

(7.26)

(using the usual multiplication of matrices). This addition operation is well
defined (compare Exercise 7 in Chapter 3). Since matrix multiplication is
associative, it follows directly that the addition on XR is associative. Since
X forms a commutative subsemigroup of the semigroup of matrices under
the usual multiplication, it again follows directly that the addition on XR is
commutative. Furthermore, the equivalence class

0 =
[
1 0
0 1

]

R

of the identity matrix is an additive identity for the semigroup (XR,+), so
we obtain a commutative monoid (XR,+, 0). Finally, note that

[
n m
0 n

]

R

+
[
n −m
0 n

]

R

=
([

n m
0 n

]
·
[
n −m
0 n

] )

R

=
[
n2 0
0 n2

]

R

=
[
1 0
0 1

]

R

— the latter equality holding directly by (7.25) — so that (XR,+, 0) is seen
to form an abelian group.

PROPOSITION 7.44
There is an injective abelian group homomorphism

jD : (D, +, 0) → (XR, +, 0); m 7→
[
1 m
0 1

]

R

.
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PROOF The map jD is an abelian group homomorphism, since
[
1 m1

0 1

]
·
[
1 m2

0 1

]
=

[
1 m1 + m2

0 1

]

for elements m1, m2 of D. By (7.25), the group kernel of jD is the set {0} of
elements m in D with

0 =
∣∣∣∣
1 m
1 0

∣∣∣∣ = −m,

so jD is injective.

Now define a commutative operation of multiplication on XR by
[
n1 m1

0 n1

]

R

·
[
n2 m2

0 n2

]

R

=
([

n1n2 m1m2

0 n1n2

])

R

. (7.27)

Note that the right-hand side of (7.27) may be written as the equivalence
class ( [

n1 m1

0 n1

]
◦

[
n2 m2

0 n2

])

R

of the componentwise or Hadamard product of the representatives of the
classes on the left-hand side of (7.27) — compare (4.18). The operation (7.27)
is well defined, as shown by the argument on page 55. Since the Hadamard
multiplication of matrices is associative, XR forms a commutative semigroup
under the multiplication (7.27). The equivalence class

1 =
[
1 1
0 1

]

R

forms an identity element for the multiplication, yielding a monoid (XR, ·, 1).
Moreover, the map jD : (D, ·, 1) → (XR, ·, 1) of Proposition 7.44 is a monoid
homomorphism. Finally, note that

[
n m
0 n

]

R

·
[
m n
0 m

]

R

=
[
nm nm
0 nm

]

R

=
[
1 1
0 1

]

R

— the latter equality holding directly by (7.25) — for each nonzero element
[
n m
0 n

]

R

of XR. Thus the set of nonzero elements of XR forms a commutative group
under multiplication. A direct verification shows that the multiplication in
XR distributes over the addition (Exercise 26). Altogether, we obtain a field
(XR, +, ·), and jD : D → XR becomes a unital ring homomorphism.
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DEFINITION 7.45 (The field of fractions of an integral domain.)
Let D be an integral domain. The field XR is called the field of fractions FD

of the integral domain D. Each equivalence class
[
n m
0 n

]

R

is written in the forms
m

n
= n−1m = m/n .

The addition becomes
a

b
+

c

d
=

ad + bc

bd
.

The multiplication becomes
a

b
· c

d
=

ac

bd
.

The inversion of nonzero elements becomes

(a

b

)−1

=
b

a
.

Then the map jD takes the form

jD : D → FD; m 7→ m

1
.

The integral domain D is usually identified with its image under the injective
map jD.

Example 7.46 (The field of fractions of the integers.)
The field of fractions of Z is the field Q of rational numbers.

Example 7.47 (Rational functions.)
Let D be an integral domain, and let X be an indeterminate over D. By

Corollary 7.14, the ring D[X] of polynomials in X over D forms an integral
domain. The field of fractions of the integral domain D[X] is called the field
D(X) of rational functions in X over D. Thus an element of D(X) is of the
form

f(X)
g(X)

in which f(X) and g(X) are polynomials over D, the polynomial g(X) being
nonzero. Such elements are known as rational functions over D.
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7.9 Exercises

1. Show that the ring Z/5 of integers modulo 5 forms an integral domain.

2. Show that the ring Z/6 of integers modulo 6 does not form an integral
domain.

3. Let n be a prime number. Show that the ring Z/n of integers modulo n
forms an integral domain.

4. Let n be a composite number. Show that the ring Z/n of integers modulo
n does not form an integral domain.

5. Show that the ring Z[i] of Gaussian integers forms an integral domain.

6. Let (R, +, ·) be a commutative ring. Let Z be the subset of R consisting
of 0 and the zero divisors. Show that (Z, ·) is a subsemigroup of (R, ·).

7. (a) Show that with the definition (7.5), the union

N−∞ = {−∞} ∪ N

of the singleton {−∞} with the set of natural numbers forms a
commutative semigroup under addition.

(b) Is N−∞ a monoid?

(c) Setting
2−∞ = 0,

show that
(N−∞,+) → (N, ·); d 7→ 2d

is a semigroup homomorphism.

8. What is the inverse of the nonzero element 25 in the field Z/41?

9. Consider the subset
S = {0, 2, 4, 6, 8}

of Z/10Z (compare Exercise 17 in Chapter 6). Show that S forms a
field.

10. Let R be a simple, unital commutative ring.

(a) Suppose that a is a nonzero element of R. Show that the set
aR = {ar | r in R} of multiples of a is a nontrivial ideal of R.

(b) Show that each nonzero element of R is invertible.

(c) Conclude that a simple, unital commutative ring is a field.
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(d) Give an example of an integral domain which is not simple.

(e) Give an example of a simple, commutative ring which is not a field.

11. Show that the ring Z/5[i] has a zero divisor.

12. Consider the group
(
(Z/2)2, +, 00

)
of length 2 bit strings discussed in

Example 7.20, with the multiplication ∗ displayed in Figure 7.1.

(a) Show that the left multiplication by 11 (using ∗) is inverse to the
left multiplication by 10.

(b) Show that the left multiplication by 10 gives a homomorphism from
the additive group

(
(Z/2)2, +, 00

)
to itself.

13. In the ring Z/3[X] of polynomials over the field Z/3 of integers modulo 3,
find the quotient and remainder when the polynomial X4− 1 is divided
by X2 + X + 1.

14. Let f(X) be a polynomial over a field F . For a general linear polynomial
a1X + a0 (with a1 6= 0) over the field F , show that the remainder left
after dividing f(X) by a1X + a0 is f(−a−1

1 a0).

15. (Fermat’s Little Theorem.) Let p be a prime number.

(a) Show that each nonzero element of the field Z/p is a root of the
polynomial Xp−1 − 1 over Z/p. (Hint: Apply Exercise 36 from
Chapter 5 to the group G of nonzero elements of Z/p.)

(b) Show that each element of the field Z/p is a root of the polynomial
Xp −X over Z/p.

16. Consider the polynomial p(X) = Xr − 1, for a positive integer r.

(a) Show that p(X) has r roots in the field of complex numbers. (Hint:
Compare Exercise 35 in Chapter 5.)

(b) Show that p(X) may have less than r roots in the field of real
numbers.

(c) For which positive integers r does p(X) have r roots in the field of
real numbers?

17. Let J be an ideal in the ring F [X] of polynomials over a field F . Consider
the set M of nonzero polynomials in J whose degree is minimal in the
set S of (7.14).

(a) Given two polynomials in M , show that each is a multiple of the
other.

(b) Given two polynomials in M , show that each is a constant multiple
of the other.
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(c) Given a polynomial in M , show that each of its nonzero constant
multiples also lies in M .

(d) Show that the set M contains a unique monic polynomial.

18. Consider the elements 2 and X in the ring Z[X] of polynomials over the
integers.

(a) Show that 2Z[X] + XZ[X] is an ideal of Z[X].

(b) Show that there can be no polynomial d(X) in Z[X] for which

2Z[X] + XZ[X] = d(X)Z[X] .

(c) Conclude that Theorem 7.27 cannot be generalized, replacing the
field F with an integral domain.

19. Let R be the set of all the 2× 2 matrices of the form
[
x 3y
y x

]

with x and y from the ring Z/5 of integers modulo 5.

(a) Show that R is a subring of the ring (Z/5)22 of all 2 × 2 matrices
over Z/5.

(b) Show that R is a field.

(c) Find the minimal polynomial of the kernel ideal of the evaluation
homomorphism

Z/5[X] → R; p(X) 7→ p
( [

0 3
1 0

])
.

20. Show that the polynomial X3+X+1 is an irreducible element of Z/7[X].

21. Let p(X) be a polynomial over a field F , and let c be an element of F .
Show that p(X) is irreducible if and only if p(X + c) is irreducible.

22. Consider the polynomial p(X) = X2 + 1 over the field Z/3 of integers
modulo 3. Let J be the ideal p(X)Z/3[X] of multiples of p(X).

(a) Show that p(X) is irreducible over Z/3[X].

(b) Compute the powers of the coset X + J in the field Z/3[X]
/

J .

(c) Find the unique representative r(X) of the coset X3 +X6 +J with
deg r(X) < 2.
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(d) Compute the product

(X + 1 + J)(2X + 1 + J)

in the field Z/3[X]
/

J .

(e) Show that Z/3[X]
/

J is isomorphic to the field Z/3[i] discussed in
Example 7.18.

23. Verify that the Lagrange interpolant

0 · δ0(X) + 1 · δ1(X) + (−1) · δ−1(X)

to the identity function id : Z/3 → Z/3 on the 3-element field of integers
modulo 3 is X (compare Example 7.42).

24. Show that the Lagrange interpolant passing through two specified points
(x0, y0) and (x1, y1), with x0 6= x1, is

1
x1 − x0

{
(y1 − y0) ·X −

∣∣∣∣
x0 y0

x1 y1

∣∣∣∣
}

.

25. Show that the infinite field of real numbers is not polynomially complete:
Give an example of a function f : R→ R which cannot be implemented
as the evaluation of a polynomial p(X) over R. Justify your claim.

26. Let D be an integral domain. Show that the multiplication (7.27) in
XR distributes over the addition (7.26).

27. Suppose that an integral domain D is actually a field. Show that the
embedding jD : D → FD of D into its field of fractions is an isomorphism
of fields.

28. Show that the field of fractions of the integral domain Z[i] of Gaussian
integers (compare Exercise 5) is Q[i].

29. Let D be an integral domain, and let θ : D → K be an injective unital
ring homomorphism from D to a field K. Show that there is a unique
field homomorphism Fθ : FD → K such that Fθ ◦ jD = θ.

30. Let D be an integral domain, and let X be an indeterminate over D.
Show that the field of fractions FD of D is a subfield of the field D(X)
of rational functions in X over D.

31. Let D be an integral domain, and let X be an indeterminate over D.
Show that

Xn+1 − 1
X − 1

= Xn + Xn−1 + . . . + X + 1

for each natural number n.
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7.10 Study projects

1. Permutation polynomials. Let F be a finite field. A polynomial
p(X) in F [X] is a permutation polynomial if its polynomial function

F → F ; c 7→ p(c)

— compare Definition 6.40(b) — is a permutation of the finite set F .

(a) Show that a polynomial of degree 1 in F [X] is a permutation poly-
nomial.

(b) Show that the symmetric group S3 is the full set of polynomial
functions of degree 1 polynomials in Z/3[X].

(c) Show that the degree 1 polynomial functions over the field Z/5

form a proper subgroup of the symmetric group S5.

(d) Show that the degree 1 polynomial functions, together with the
degree 3 permutation polynomial functions, combine to give the
full symmetric group S5.

(e) Give an example of a degree 3 polynomial over the field Z/5 which
is not a permutation polynomial.

2. Simpson’s Rule. Suppose that

f : [−1, 1] → R

is a continuous, real-valued function defined on the interval [−1, 1] of
real numbers r with −1 ≤ r ≤ 1. Simpson’s Rule approximates the
Riemann integral ∫ 1

−1

f(x)dx

as the integral of the Lagrange interpolant polynomial function p(X)
that is determined by the specifications

−1 7→ f(−1) , 0 7→ f(0) , 1 7→ f(1) . (7.28)

(a) Find the quadratic interpolant p(X) specified by (7.28).

(b) Evaluate the Riemann integral

∫ 1

−1

p(x)dx (7.29)

of the quadratic interpolant.
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(c) Consider the function cos (πx/2) on the interval [−1, 1]. Compute
the true value of the Riemann integral

∫ 1

−1

cos
(πx

2

)
dx ,

and compare it with the value (7.29) given by Simpson’s Rule in
this case.

3. Primitive elements. Given a prime number p, and an irreducible
polynomial p(X) of degree n in the ring Z/p[X] of polynomials over
the p-element field Z/p , Theorem 7.39 shows that the quotient ring
Z/p[X]

/
J by the ideal p(X)Z/p[X] of multiples of p(X) forms a field

K. Proposition 7.31 shows that this field has pn elements, and it also
reduces the additive group structure (K, +, 0) to the power (Z/p, +, 0)n.
The problem of computing products and inverses in the field K still
remains. This problem is solved by the use of primitive elements.

An element e of a finite field K is said to be primitive if the set 〈e〉 of
powers of e is the full set K∗ of nonzero elements of the field K.

(a) Show that X + J is a primitive element of the 8-element field in
Example 7.40.

(b) Show that the polynomial p(X) = X2 + X + 1 is irreducible over
the field Z/5.

(c) Define J = (X2 + X + 1)Z/5[X] and K = Z/5[X]
/
J . Show that

X + J is not a primitive element of K.

(d) Show that (X + 1) + J is not a primitive element of K.

(e) Show that (X + 2) + J is a primitive element of K.

4. Discrete logarithms. Given a primitive element e for a finite field K,
each nonzero element x of the field appears as a unique power el of e
with 0 ≤ l < |K| − 1. This power is defined as the discrete logarithm
loge x of x to the base e. A table of the discrete logarithms to base
X +J for the 8-element field of Example 7.40 is displayed in Figure 7.3.
The coefficients of the unique coset representatives of degree less than
3 are written as bit strings.

x 001 010 011 100 101 110 111

loge x 0 1 3 2 6 4 5

FIGURE 7.3: Discrete logs to base X in Z/2[X]
/
(X2 + X + 1)Z/2[X].
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n 0 1 2 3 4 5 6

en 001 010 100 011 110 111 101

FIGURE 7.4: Discrete antilogs to base X in Z/2[X]
/
(X2 +X +1)Z/2[X].

Figure 7.4 displays the corresponding “antilogarithms,” the successive
powers of the primitive element e.

Compute similar tables of discrete logarithms and antilogarithms for
the primitive element e = (X + 2) + J in the field K = Z/5[X]

/
J with

J = (X2 + X + 1)Z/5[X]. Field elements can be represented as pairs
r1r0 of elements of Z/5, the coefficients of the representative polynomial.

7.11 Notes

Section 7.1

Some authors use the absence of zero divisors in nontrivial, commutative
unital rings to define integral domains (compare Proposition 7.8). However,
Definition 7.1 is more direct and positive.

Section 7.7

L. Kronecker was a German mathematician who lived from 1823 to 1891.

Section 7.8

The use of matrices in the construction of the field of fractions helps to
minimize the number of formal verifications required, leaving only the proof of
transitivity of the equivalence relation R, and confirmation of the distributive
law.

Section 7.9

P. Fermat was a French mathematician who lived from 1601 to 1665. His
“Little Theorem” (Exercise 15) is not to be confused with his “Last Theorem,”
the nonexistence of positive integers x, y, z with xn + yn = zn when n > 2.

Section 7.10

T. Simpson was an English mathematician who lived from 1710 to 1761.



Chapter 8

FACTORIZATION

The Fundamental Theorem of Arithmetic governs factorization of integers.
Factorization of a polynomial is the key step to location of its roots. In this
chapter, we consider the factorization of elements in various rings, obtaining
a deeper insight into the structure of finite fields.

8.1 Factorization in integral domains

Integral domains follow the model of the ring Z of integers. Factorization
in the ring of integers was studied in Chapter 1. However, the discussion
there focussed mainly on positive integers. Now the group of units of Z is
Z∗ = {±1}, and each nonzero integer n is related to the positive integer |n|
by the equation |n| = u ·n for a unit u of Z. When discussing factorization in
general integral domains, consideration of units (invertible elements) is a key
feature. In an integral domain D, a factorization

a = b · c
of an element a of D as a product of elements b and c of D is said to be proper
if neither b nor c is a unit.

The following observation is very useful.

PROPOSITION 8.1
Let d be a nonzero element of an integral domain D. Then for an element u
of D, the equality dD = duD holds if and only if u is a unit.

PROOF Each multiple of du is certainly a multiple of d, so the set duD
is always a subset of dD.

If u is a unit, say uv = 1 for v in D, then each multiple dx of d is the
multiple duvx of du, so dD is a subset of duD, and the equality dD = duD
holds.

Conversely, suppose dD = duD, so the element d1 of dD is some multiple
duv of du. Cancellation (Proposition 7.10, page 159) in the equation d1 = duv
implies that 1 = uv, so u is a unit.

185
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In Section 1.7, two properties of positive integers were introduced:

• the internal property of being irreducible, and

• the external property of being prime.

Here are the corresponding properties in general integral domains:

DEFINITION 8.2 (Irreducibles and primes.) Let D be an ID.

(a) An element a of D is said to be irreducible in D if it is not zero, not a
unit, and if it has no proper factorization a = b · c in D.

(b) An element a of D is said to be prime in D if it is not zero, not a unit,
and if

a | bc implies
(

a | b or a | c )

for elements b and c of D.

REMARK 8.3 (a) For a unit u, an element a of an integral domain D is
irreducible if and only if ua is irreducible (Exercise 2).

(b) A nonzero, noninvertible element a of an integral domain D is reducible
if it is not irreducible. A reducible element does have a proper factorization
in D.

(c) The clause “in D” is an important rider on the terms “irreducible” and
“prime” in Definition 8.2. For example, even if a nonzero element a of an
integral domain D is prime in D, it is not prime in the field of fractions FD,
since there it is invertible. Also, compare Example 7.35 (page 170).

Example 8.4 (Integers.)
An integer n is irreducible in Z according to Definition 8.2(a) if and only

if |n| is a prime positive integer. This condition, in turn, is equivalent to n
being prime in the sense of Definition 8.2(b).

Example 8.5 (Polynomials.)
Let F be a field. Consider the integral domain F [X] of polynomials over F ,

and an element f(X) of F [X]. The units in the ring F [X] are the nonzero
constants, the polynomials of degree 0. Now f(X) is nonzero and not a unit
if it is not a constant, so deg f(X) > 0. Thus f(X) is irreducible in F [X] by
Definition 8.2(a) if and only if it is irreducible by Definition 7.34.

For positive integers, the two properties: being irreducible, and being prime,
turned out to be equivalent (Proposition 1.11, page 13), so the single term
“prime” sufficed in that case. An example shows that in a general integral
domain, the two concepts may differ.
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Example 8.6 (Irreducibles need not be prime.)
Consider the commutative unital subring

Z
[√−3

]
=

{[
x −3y
y x

] ∣∣∣∣ x, y in Z
}

of the ring Z2
2 of 2× 2 matrices over Z. Note that

[
0 −3
1 0

] [
0 −3
1 0

]
=

[−3 0
0 −3

]
= (−3)I2 ,

so the matrix
[
0 −3
1 0

]
serves as a square root of −3, and each element of

Z[
√−3 ] may be written in the form

[
x −3y
y x

]
= x + y

√−3

with integers x and y. Now

det
[
x −3y
y x

]
= x2 + 3y2 = 0

if and only if x = y = 0. Recalling

det(AB) = det(A) det(B)

for matrices A and B (Exercise 7 in Chapter 5), it is apparent that Z
[√−3

]

is an integral domain. Moreover, the determinants of elements of Z
[√−3

]
are

0, 1, 3, 4, 7, 9, 12, 13, 16, . . . (8.1)

in increasing order, an element being invertible in Z
[√−3

]
if and only if its

determinant is 1. Now
[
1 −3
1 1

] [
1 3
−1 1

]
=

[
4 0
0 4

]
=

[
2 0
0 2

] [
2 0
0 2

]
. (8.2)

The factors [
1 −3
1 1

]
,

[
1 3
−1 1

]
, and

[
2 0
0 2

]

of 4I2 are irreducible in Z
[√−3

]
, since their respective determinants are

all equal to 4, an integer which does not factor nontrivially into a product
of members of the ordered list (8.1). Thus elements of Z

[√−3
]

may not
have a unique factorization into products of irreducibles. Moreover, since the
irreducible element 2I2 divides the product on the left-hand side of (8.2), but
does not divide either of the two individual factors in that product, it is not
a prime element of Z

[√−3
]
.



188 Introduction to Abstract Algebra

The following result clarifies the general relationship between the concepts
of Definition 8.2 within an integral domain D:

prime (external property)
implies
irreducible (internal property)

PROPOSITION 8.7 (Primes are irreducible.)
Let D be an integral domain. If an element a of D is prime in D, then it is

also irreducible in D.

PROOF Suppose that the prime element a factorizes as a = bc in D. Then
certainly a | bc. Since a is prime, it follows that a divides at least one of b and
c, say c = ua for some element u of D. Then 1c = c = ua = ubc, so 1 = ub
by cancellation (Proposition 7.10, page 159). It follows that b is a unit in D:
the factorization a = bc is improper.

8.2 Noetherian domains

The Fundamental Theorem of Arithmetic has two parts. The “existence
part” of the theorem, Theorem 1.13 (page 15), shows that each integer n > 1
may be factorized as some product of irreducibles. Then the “uniqueness part”
of the theorem, Theorem 1.14 (page 15), shows that any such factorization
is essentially unique. Noetherian domains, the topic of this section, form a
general class of integral domains having an analogue of the “existence part”
of the Fundamental Theorem of Arithmetic. (For a complete characterization
of those integral domains in which factorizations exist, without necessarily
existing uniquely, see Exercise 7.)

Let R be a ring. An ascending chain of ideals in R is a sequence

J0 ↪→ J1 ↪→ . . . ↪→ Jn ↪→ Jn+1 ↪→ . . . (8.3)

of ideals Jn of R, for natural numbers n, such that each ideal Jn has an
embedding Jn ↪→ Jn+1 as a subset of its successor. (Compare Example 6.21,
page 135.) The union

J =
⋃

n∈N
Jn = {r | r lies in Jn for some n in N} (8.4)

of the members of the sequence is again an ideal of R (Exercise 5).
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DEFINITION 8.8 (ACC, Noetherian domains.) Let R be a ring.

(a) The ring R is said to satisfy the ascending chain condition, or ACC,
if for each ascending chain (8.3) of ideals Jn of R, there is a natural
number N such that Jm = JN for all m ≥ N .

(b) The ring R is said to be a Noetherian domain if it is an integral domain
that satisfies the ascending chain condition.

The ascending chain condition may be paraphrased as saying that there are
no infinite ascending chains (8.3): All eventually stabilize at some point JN .

PROPOSITION 8.9 (PID implies ACC.)
Each principal ideal domain D is Noetherian.

PROOF Consider an ascending chain (8.3) of ideals Jn in D. Since the
union (8.4) is again an ideal of the principal ideal domain D, it may be written
in the form

J = aD

as the set of multiples of a certain element a of D. By the definition (8.4) of
J , there is an element JN of the sequence (8.3) such that a lies in JN . For
each integer m ≥ N , the ideal JN is a subset of Jm, since the sequence (8.3)
is ascending. But Jm is a subset of J = aD. By the absorption property of
the ideal JN , the set aD is contained inside JN , so Jm is a subset of JN . Thus
Jm = JN for all m ≥ N .

PROPOSITION 8.10 (Factors in Noetherian domains.)
Let D be a Noetherian domain. Then each nonzero, noninvertible element of
D has an irreducible factor.

PROOF Assume that the proposition is false, and that a0 is a nonzero,
noninvertible element of D that does not have an irreducible factor. As an
induction hypothesis, suppose that an is a nonzero, noninvertible element of
D that does not have an irreducible factor. Since an is not itself irreducible,
it has a proper factorization an = an+1bn+1, in which the factor an+1 is
a nonzero, nonunit element of D that does not have an irreducible factor.
By induction, we obtain such elements an for each natural number n, with
anD = an+1bn+1D contained in an+1D.

Now consider the ascending chain

a0D ↪→ a1D ↪→ . . . ↪→ anD ↪→ an+1D ↪→ . . .

of ideals in D. By the ascending chain condition, there is a natural number N
with aND = aN+1bN+1D = aN+1D. Proposition 8.1 then implies that bN+1

is a unit, contradicting the properness of the factorization aN = aN+1bN+1.
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PROPOSITION 8.11 (Factorization in Noetherian domains.)
Let D be a Noetherian domain. Then each nonzero, noninvertible element of
D is a product of irreducible factors.

PROOF Let a = a0 be a nonzero, noninvertible element of D. As an
induction hypothesis, suppose that ai is a nonzero, noninvertible element of
D. If ai is not irreducible, it has a proper factorization ai = pi+1ai+1 with an
irreducible factor pi+1, by Proposition 8.10. Thus

a0 = p1a1

= p1p2a2

...
= p1p2 . . . piai

= p1p2 . . . pipi+1ai+1

= . . .

Now aiD = pi+1ai+1D is contained in ai+1D for i = 0, 1, . . . , and so on.
Consider the ascending chain

a0D ↪→ a1D ↪→ . . . ↪→ aiD ↪→ ai+1D ↪→ . . .

of ideals in D. Since D is Noetherian, the chain stabilizes as an−1D = anD
for some natural number n. Thus an is an irreducible element pn of D, and a
factorizes as a = p1 . . . pn.

COROLLARY 8.12 (Factorization in principal ideal domains.)
In a principal ideal domain D, each nonzero, noninvertible element is a

product of irreducible factors.

PROOF By Proposition 8.9, the principal ideal domain D is Noetherian.
Proposition 8.11 then gives the desired result.

8.3 Unique factorization domains

The full conclusion of the Fundamental Theorem of Arithmetic, existence
and uniqueness, is formalized in the concept of a unique factorization domain.
In order to capture the correct level of uniqueness, two elements p and q of a
general integral domain D are defined to be associates if there is a unit u from
D∗ such that p = u·q. The relation of being associate is an equivalence relation
(Exercise 10). By Remark 8.3, associates of irreducibles are irreducible.
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DEFINITION 8.13 (UFD.) A ring D is a unique factorization domain,
or UFD, if it is an integral domain in which the following properties hold:

(a) (Existence of factorizations.) Each nonzero, nonunit element a of D
has a factorization

a = p1p2 . . . pm (8.5)

as a (nonempty) product of irreducible elements p1, p2, . . . , pm of D;

(b) (Uniqueness of factorizations.) For each nonzero, nonunit element a
of D, the factorization (8.5) is unique to within reordering and passage
to associate irreducibles. In other words, if

a = p1p2 . . . pm = q1q2 . . . qn (8.6)

with irreducibles p1, p2, . . . , pm, q1, q2, . . . , qn in D, then m = n, and
there is a permutation π of {1, 2, . . . , n} such that pj is an associate of
qπ(j) for each 1 ≤ j ≤ n.

In considering the uniqueness part of Definition 8.13, it is useful to ex-
tend the defining property Definition 8.2(b) of a prime element in an integral
domain.

PROPOSITION 8.14 (“Divide and conquer.”)
Let p be a prime element of an integral domain D. If p divides a product

a1 . . . an in D, then it divides one of the factors ai for 1 ≤ i ≤ n.

PROOF By induction on n, the induction basis n = 2 being a direct
application of Definition 8.2(b). Suppose the proposition holds for all products
with less than n factors, for an integer n ≥ 3. Then by Definition 8.2(b),
p | a1 . . . an−1an implies p | a1 . . . an−1 or p | an. The second case immediately
gives the desired result. In the first case, p | ai for some 1 ≤ i < n by the
induction hypothesis.

PROPOSITION 8.15 (Irreducible ≡ prime in a UFD.)
Let D be an integral domain satisfying the property of Definition 8.13(a).

Then the following two conditions are equivalent:

(a) D is a unique factorization domain;

(b) Each irreducible element of D is prime.

PROOF (a) implies (b): Suppose that p1 is an irreducible element of a
unique factorization domain D. Suppose that a product bc in D is a multiple
p1d of p1. Suppose that the elements b, c, and d have respective factorizations

b = q1 . . . qr , c = qr+1 . . . qn , and d = p2 . . . pm
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as products of irreducibles in D. The element

a = p1d = b · c
of D then has the factorizations

a = p1p2 . . . pm = q1 . . . qr · qr+1 . . . qn ,

so p1 is the associate of qπ(1), say p1 = vqπ(1) or qπ(1) = up1 for uv = 1. If
π(1) ≤ r, we have p1 | b, while if π(1) > r, we have p1 | c.

(b) implies (a): We will prove, by induction on m, that the uniqueness
property of Definition 8.13(b) holds for each nonzero, nonunit element a of D.
The induction basis is the case m = 1 of (8.6). In this case, the factorization
q1q2 . . . qn of the irreducible element p1 must be trivial, so n = 1 and p1 = q1.
As the induction hypothesis, suppose that the uniqueness property holds for
all factorizations with less than m irreducible factors pi. Consider (8.6) with
m > 1. By the assumption (b), the irreducible element pm of D is a prime
divisor of q1 . . . qn. The “divide and conquer” Proposition 8.14 implies that
pm divides some factor qr with 1 ≤ r ≤ n. Since qr is irreducible, it can only
be a multiple qr = upm of pm with a unit u. In particular, pm is an associate
of qr. Now

p1 . . . pm−1pm = q1 . . . qr−1upmqr+1qr+2 . . . qn

implies
p1 . . . pm−1 = q1 . . . qr−1(uqr+1)qr+2 . . . qn (8.7)

by cancellation. Set

q′i =





qi for 1 ≤ i < r ;
uqi+1 for i = r ;
qi+1 for r < i < n .

The equality (8.7) reads as

p1 . . . pm−1 = q′1 . . . q′n−1

with irreducibles q′1, . . . , q
′
n−1. By the induction hypothesis, n − 1 = m − 1,

and there is a permutation π′ of {1, . . . , m−1} such that each pj for 1 ≤ j < m
is an associate of q′π′(j). Now define

π(j) =





π′(j) for 1 ≤ π′(j) < r ;
π′(j) + 1 for r ≤ π′(j) < m ;
r for j = m.

For 1 ≤ j < m, the irreducible pj is an associate of q′π′(j), which in turn is an
associate of qπ(j). Also, the irreducible pm is an associate of qr = qπ(m). Thus
the uniqueness property holds for factorizations with m irreducible factors pi,
as required to complete the inductive proof.
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THEOREM 8.16 (Every PID is a UFD.)
Let D be a principal ideal domain.

(a) Each irreducible element p of D is prime.

(b) The integral domain D is a unique factorization domain.

PROOF (a): Suppose p | ab, say ab = pc with c in D. Consider the set

J = {xp + ya | x, y in D} (8.8)

of “D-linear combinations” of p and a. Now J is an ideal of D (Exercise 14).
Since D is a principal ideal domain, J is just the set dD of multiples of some
element d of D. As 1p+0a, the irreducible element p of D lies in J , and is thus
expressible as a multiple p = dz of D. Since p is irreducible, the factorization
p = dz is improper.

(i) If d is a unit, then J = dD = D contains 1, say 1 = x1p + y1a.
Now b = 1b = x1pb + y1ab = x1bp + y1cp = (x1b + y1c)p, so p
divides b in this case.

(ii) If z is a unit, J = dD = dzD = pD by Proposition 8.1, so p
divides the element a = 0p + 1a of J in this case.

(b): By Corollary 8.12, D satisfies the existence property of Definition 8.13(a).
Using part (a) of the theorem, part (b) then follows from Proposition 8.15.

8.4 Roots of polynomials

Let F be a field. By Theorem 7.27 (page 167), the ring F [X] of polynomials
over F is a principal ideal domain. Theorem 8.16(b) then shows that F [X] is
a unique factorization domain. The remainder of the chapter will rely heavily
(and implicitly) on this property of such rings F [X]. Note that the group of
units F [X]∗ of the ring F [X] is the group F ∗ of nonzero constant polynomials
(elements of F ). In particular, each polynomial of positive degree is associate
to a unique monic polynomial (Exercise 12).

A field F is said to be a subfield of a field E if F is a subset of E, and the
inclusion j : F ↪→ E is a ring homomorphism. In this context, the field E is
also described as an extension (field) of F . If there is a further field K with
inclusions F ↪→ K ↪→ E that are ring homomorphisms, then K is described
as an intermediate field between F and E. If a1, . . . , an are elements of E,
then F (a1, . . . , an) will denote the smallest intermediate field containing the
set {a1, . . . , an}. For example, C is an extension field of Q, with intermediate
field R. Then Q(i) = {x + iy | x, y in Q}.
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In its most basic application, the field C of complex numbers is used to
furnish a root i =

√−1 of the polynomial X2 +1 from R[X]. The polynomial
X2 + 1 then factorizes in C[X] as the product

X2 + 1 = (X + i)(X − i)

of linear factors. The following result, known as Kronecker’s Theorem, shows
that each nonconstant polynomial over a field has a root in some extension
field.

THEOREM 8.17 (Kronecker’s Theorem.)
Let F be a field. If f(X) is a nonconstant polynomial in F [X], then f(X)

has a root in some extension field E of F .

PROOF As a nonconstant polynomial, f(X) is nonzero and noninvertible
in the Noetherian domain F [X]. Proposition 8.10 shows that f(X) has an
irreducible factor p(X). If p(X) has a root x in an extension field E, then
f(x) = 0 in E.

Let J be the ideal p(X)F [X] of F [X]. Since p(X) is irreducible, the quotient
ring E = F [X]/J is a field (Theorem 7.39, page 171). Let x be the element
X + J of E. Then p(x) = p(X) + J = p(X) + p(X)F [X] = p(X)F [X] = J ,
so x is a root of p(X) in E.

Example 8.18 (The square root of –1.)
Kronecker’s Theorem builds R[X]/(X2+1)R[X] as the extension field E of R
in which the real polynomial X2 +1 has a root. As discussed in Example 7.29
(page 168), this field E is isomorphic to the field C of complex numbers.
Moreover, the root x = X + (X2 + 1)R[X] of X2 + 1 in E maps to the
complex number i under the isomorphism (7.16).

The real polynomial

f(X) = X4 + 2X2 + 1 = (X2 + 1)2 (8.9)

has no real roots. However, in the extension field C of R, it has i as a double
root, since it factorizes as X4 + 2X2 + 1 = (X + i)2(X − i)2 in C[X]. There
is a way to recognize that the real polynomial f(X) has a repeated root in
the extension field C, without leaving the field of real numbers. Consider the
derivative

f ′(X) = 4X3 + 4X = 4X(X2 + 1) ,

computed as usual in calculus. It is then apparent that f(X) and f ′(X) share
the common, nonconstant factor X2 + 1 in R[X].

If F is an abstract field, there is no analytical method to differentiate a
polynomial f(X) in F [X]. However, one may define the derivative Df(X) in
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F [X] of a polynomial f(X) in F [X] using the formal rules

DXn = nXn−1

and
D

(
af(X) + bg(X)

)
= aDf(X) + bDg(X)

for positive integers n, for constants a, b in F , and for polynomials f(X) and
g(X) in F [X]. The following properties are readily verified, just as in calculus
(Exercise 22).

PROPOSITION 8.19 (Rules for differentiation.)
Let F be a field.

(a) For a polynomial

p(X) = pnXn + pn−1X
n−1 + · · ·+ p1X + p0

in F [X], the derivative is given as

Dp(X) = npnXn−1 + (n− 1)pn−1X
n−2 + · · ·+ p1 .

(b) The product rule holds:

D
(
f(X) · g(X)

)
= Df(X) · g(X) + f(X) ·Dg(X)

for polynomials f(X) and g(X) in F [X].

The formal derivative may then be used to spot when a polynomial will
have repeated roots in some extension field.

THEOREM 8.20 (Derivatives and repeated roots.)
Let F be a field, and let f(X) be a nonconstant polynomial in F [X]. The

following conditions are equivalent:

(a) There is an extension field E of F in which f(X) has a repeated root.

(b) The polynomials f(X) and Df(X) share a common factor of positive
degree in the unique factorization domain F [X].

PROOF (a) implies (b): Suppose that there is a factorization

f(X) = (X − a)2g(X)

in the ring E(X) of polynomials over an extension field E of F . By the
product rule,

Df(X) = 2(X − a)g(X) + (X − a)2Dg(X) .
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Thus f(a) = 0 and Df(a) = 0. Let j : F ↪→ E be the inclusion of F in
E. The Substitution Principle (Theorem 6.39, page 145) gives a unique ring
homomorphism ja : F [X] → E;h(X) 7→ h(a) with ja(X) = a. The ring kernel
Ker ja in the principal ideal domain F [X] is the set p(X)F [X] of multiples of
a certain nonconstant polynomial p(X). Since f(a) = 0 and Df(a) = 0, the
polynomial p(X) is a common factor of f(X) and DF (X) in F [X].

(b) implies (a): Suppose that p(X) is a nonconstant factor of both f(X)
and Df(X) in F [X]. By Kronecker’s Theorem, there is an extension field E
of F in which p(X) has a root a, so f(a) = 0 = Df(a) in E. Then

f(X) = (X − a)h(X) (8.10)

in E[X], and
Df(X) = h(X) + (X − a)Dh(X)

by the product rule. Now Df(a) = 0 in E implies h(a) = 0 in E. From (8.10),
it is apparent that f(X) has a as a repeated root in E.

8.5 Splitting fields

Let f(X) be a polynomial over a field F . The polynomial f(X) is said
to split over an extension field E of F if f(X) factorizes as a product of
linear factors in E[X]. For example, the polynomial X4 + 2X2 + 1 of (8.9),
considered as a polynomial over the field Q of rationals, splits over the field of
complex numbers. The splitting of nonconstant polynomials is a consequence
of Kronecker’s Theorem.

PROPOSITION 8.21 (Every nonconstant polynomial splits.)
Let f(X) be a nonconstant polynomial over a field F . Then f(X) splits over
some extension field E of F .

PROOF As an induction hypothesis, assume that the proposition is true
for all fields F and for all nonconstant polynomials of degree less than some
positive integer n. Note that the proposition is trivial if deg f = 1. Suppose
deg f = n > 1.

Case A: If f(X) has a root a in F , then it factorizes as (X − a)g(X) in
F [X], with deg g = n− 1. By induction, g(X) splits over some extension field
E of F . Then so does f(X).

Case B: If f(X) has no root in F , it has an irreducible factor p(X) in
F [X]. By Kronecker’s Theorem, there is an extension field K of F such that
p(X) has a root a in K. Then f(X), as a nonconstant polynomial of degree
n in K[X], has a root a in K. Case A now applies, with F replaced by K.
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It follows that f(X) splits over some extension field E of K. Since F is a
subfield of K, the field E is an extension field of F .

The proof of Proposition 8.21 embodies a process for finding an extension
field E over which a polynomial f(X) from F [X] will split. Consider the
example of f(X) = X4 +2X2 +1 in Q[X]. Since f(X) has no root in Q, Case
B becomes relevant. Now f(X) has the irreducible factor X2 + 1 in Q[X].
Kronecker’s Theorem builds

Q(i) = Q[X]
/
(X2 + 1)Q[X] = {x + iy | x, y in Q} (8.11)

as an extension field of Q in which X2 + 1 has a root, namely

i = X + (X2 + 1)Q[X] .

At this point, we are transferred to Case A, working with the polynomial f(X)
as an element ofQ(i)

[
X

]
. Factorization inQ(i)

[
X

]
yields f(X) = (X−i)g(X)

with g(X) = (X + i)2(X − i) . Since g(X) already splits over Q(i), this is the
extension field over which f(X) will split, as f(X) = (X − i)2(X + i)2 .

Let F be a field. Let f(X) be a nonconstant polynomial in F [X]. Suppose
that f(X) splits over an extension field L of F , say as a product

f(X) = c(X − l1)(X − l2) . . . (X − ln)

of a nonzero constant c from F and (not necessarily distinct) linear factors
(X − li) with li in L. The smallest subfield F (l1, . . . , ln) of L containing F
and the set {l1, . . . , ln} of roots is called a splitting field of f(X) over F . In
other words, a field K is a splitting field for a polynomial f(X) in F [X] if

• f(X) = c0(X − c1) . . . (X − cn) in K[X] (with c0, c1, . . . , cn in K), and

• f(X) doesn’t split over any proper intermediate field between F and K.

Note the dependence on the choice of coefficient field F for the polynomial
f(X), just as with the definition of irreducibility.

Example 8.22 (Dependence of the splitting field.)
With F = Q and f(X) = (X2 + 1)2, we obtain (8.11) as a splitting field. On
the other hand, C is a splitting field for f(X) = (X2 + 1)2 over F = R.

Example 8.23 (Use of the quadratic formula.)
Consider the problem of specifying a splitting field for the quadratic equation

f(X) = X2 −X + 1

over Q. Recall that for complex numbers a, b, and c, the quadratic polynomial
aX2 + bX + c has roots given by the formula

−b±√b2 − 4ac

2a
.
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Applying that formula to f(X) in C[X], we obtain the two roots 1
2 (1± i

√
3).

These roots lie in the field Q(i
√

3) or Q[X]
/
(X2 + 3)Q[X], giving

f(X) =
(
X − 1

2
(
1 + i

√
3

)) ·
(
X − 1

2
(
1− i

√
3

))

as the factorization in Q(i
√

3)
[
X

]
. Since i

√
3 is not rational, no smaller field

will split f(X). Thus Q(i
√

3) is the splitting field.

Example 8.24 (Roots of unity.)
Let n > 2 be an integer. To specify a splitting field for Xn − 1 over Q,

consider the complex number

ω =
[
cos(2π/n) − sin(2π/n)
sin(2π/n) cos(2π/n)

]
= cos

(
2π

n

)
+ i sin

(
2π

n

)
.

The powers ωr, for 0 ≤ r < n, are n roots of Xn−1. They are known as roots
of unity . Then

Xn − 1 = (X − 1)(X − ω)(X − ω2) . . . (X − ωn−1)

in Q(ω), and Q(ω) is seen to be a splitting field for Xn − 1 over Q.

8.6 Uniqueness of splitting fields

The proof of Proposition 8.21 provides a technique for obtaining a splitting
field of a nonconstant polynomial f(X) in the ring of polynomials over a
field F . However, the technique involves some arbitrary choices: choice of a
particular root a in Case A, or choice of a particular irreducible factor p(X) in
Case B. Different choices at these points cause a branching in the construction
process that could potentially lead to different splitting fields. In this section,
it will be shown that the divergent paths eventually land back in the same
place: Any two splitting fields for f(X) over F are isomorphic.

We begin with the case of an irreducible polynomial.

PROPOSITION 8.25
Let F be a field, and let p(X) be an irreducible polynomial over F . Suppose

that ai is a root of p(X) in an extension field Ei of F , for i = 1, 2. Then the
fields F (a1) and F (a2) are each isomorphic to F [X]

/
p(X)F [X].

PROOF For i = 1, 2, let ji : F ↪→ Ei be the inclusion of F in the extension
field Ei. The Substitution Principle (Theorem 6.39, page 145) gives a unique
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ring homomorphism ji
ai

: F [X] → Ei;h(X) 7→ h(ai) with ji
ai

(X) = ai. The
ring kernel Ker ji

ai
in the principal ideal domain F [X] is the set qi(X)F [X] of

multiples of a certain nonconstant polynomial qi(X). Now p(ai) = 0 implies
that the irreducible polynomial p(X) is a multiple of qi(X). Since p(X) is
prime in the principal ideal domain F [X], the polynomials p(X) and qi(X) are
associates, so Ker ji

ai
= qi(X)F [X] = p(X)F [X]. The image of ji

ai
is F (ai),

so the First Isomorphism Theorem for rings gives a well-defined isomorphism

bi : F [X]
/
p(X)F [X] → F (ai); h(X) + p(X)F [X] 7→ h(ai) (8.12)

for i = 1, 2.

A slight refinement of Proposition 8.25 is needed for the treatment of the
general case.

PROPOSITION 8.26
Let F be a field, and let p(X) be an irreducible polynomial over F . Suppose

that a1 is a root of p(X) in an extension field of F . Let θ : F → G;x 7→ x be
a field isomorphism, with corresponding ring homomorphism

θX : F [X] → G[X];h(X) 7→ h(X)

given by the Substitution Principle. Let a2 be a root of p(X) in an extension
field of G. Then there is a field isomorphism θ : F (a1) → G(a2), restricting
to θ : F → G, with θ(a1) = a2.

PROOF The ring homomorphism θX : F [X] → G[X] is an isomorphism,
with two-sided inverse G[X] → F [X]; h(X) 7→ h(X). Thus p(X) is irreducible
in G[X]. By Proposition 8.25, there is an isomorphism

b1 : F [X]
/
p(X)F [X] → F (a1); h(X) + p(X)F [X] 7→ h(a1)

as in (8.12), restricting to the identity map on F in the form

F → F ;x + p(X)F [X] 7→ x .

Similarly, there is an isomorphism

b2 : G[X]
/
p(X)G[X] → G(a2);h(X) + p(X)G[X] 7→ h(a2)

as in (8.12), restricting to the identity map on G in the form

G → G;x + p(X)G[X] 7→ x .

Moreover, the First Isomorphism Theorem for rings, applied to

F [X] → G[X]
/
p(X)G[X]; h(X) 7→ h(X) + p(X)G[X] ,
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yields a well-defined isomorphism

b : F [X]
/
p(X)F [X] → G[X]

/
p(X)G[X];

h(X) + p(X)F [X] 7→ h(X) + p(X)G[X] .

The desired isomorphism θ : F (a1) → G(a2) is then realized by b2 ◦ b ◦ b−1
1 .

6

b1

-b

6

b2

θ -

x + yX + (X2 + 1)R[X] x + yX + (X2 + 1)R[X]

x + iy x− iy

FIGURE 8.1: Complex conjugation from Proposition 8.26.

Example 8.27 (Complex conjugation.)
For the irreducible polynomial p(X) = X2 + 1 in R[X], consider the root

a1 = i in the extension field C = R(i). Take θ : R→ R to be the identity map
idR on the reals. Take a2 to be the root −i of p(X) = X2 + 1. Then the field
isomorphism θ : R(i) → R(−i) with θ(i) = −i is the complex conjugation

C→ C; z = x + iy 7→ z = x− iy

(Figure 8.1). Compare Study Project 1 in Chapter 6.

It will now be shown that splitting fields are unique up to isomorphism.

PROPOSITION 8.28
Let F be a field. Let f(X) be a nonconstant polynomial in F [X]. Let

θ : F → G;x 7→ x

be a field isomorphism, with corresponding ring homomorphism

θX : F [X] → G[X];h(X) 7→ h(X)

given by the Substitution Principle. Suppose that K is a splitting field for
f(X) over F [X], and that L is a splitting field for f(X) over G. Then there
is a field isomorphism θ : K → L extending θ : F → G.
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PROOF As an induction hypothesis, suppose that the proposition is true
for all fields F and for all nonconstant polynomials of degree less than some
positive integer n. (Note that the proposition is trivial if deg f = 1, since
K = F , L = G, and θ : K → L is just θ : F → G in that case.) Suppose
deg f = n > 1.

Let p(X) be an irreducible factor of f(X). Let a1 be a root of p(X) in
K, and let a2 be a root of p(X) in L. By Proposition 8.26, there is a field
isomorphism θ̃ : F (a1) → G(a2) extending θ : F → G, with θ̃(a1) = a2.
Within the polynomial ring F (a1)

[
X

]
, the polynomial f(X) factorizes as

f(X) = (X − a1)b(X).
Since deg f > 1, the polynomial b(X) in F (a1)

[
X

]
is nonconstant, of degree

n− 1. Now K is a splitting field for b(X) over F (a1). The field isomorphism

θ̃ : F (a1) → G(a2)

furnishes a ring isomorphism

θ̃X : F (a1)
[
X

] → G(a2)
[
X

]
; h(X) 7→ h̃(X)

by the Substitution Principle. Note that θ̃X extends θX . Under the ring
isomorphism θ̃X , the factorization f(X) = (X − a1)b(X) in F (a1)

[
X

]
maps

to f(X) = (X−a2)̃b(X) in G(a2)
[
X

]
. Thus L is a splitting field for b̃(X) over

G(a2). By the induction hypothesis, there is a field isomorphism θ : K → L

extending θ̃ : F (a1) → G(a2). Since θ̃ : F (a1) → G(a2) extends θ : F → G,
it follows that θ : K → L extends θ : F → G. This completes the inductive
proof.

THEOREM 8.29 (Uniqueness of splitting fields.)
Let F be a field. Let f(X) be a nonconstant polynomial in F [X]. Suppose that
K and L are splitting fields for f(X) over F . Then K and L are isomorphic.

PROOF In Proposition 8.28, take θ : F → G to be the identity map
idF : F → F on F .

Example 8.30 (Splitting Xn − a over the rationals.)
Let n > 2 be an integer. Let a be a positive real number. Consider the

problem of determining the splitting field for Xn − a over Q. Since x 7→ xn

is a strictly increasing, continuous function on the set of positive reals, there
is a unique positive real number r with rn = a. This number is denoted by
a1/n. The field Q(a1/n) is a subfield of R. In Q(a1/n)

[
X

]
, the polynomial

Xn− a has a linear factor X − a1/n, but does not factorize further. However,
in Q(a1/n)(ω), with ω as in Example 8.24, the polynomial Xn−a splits, with
roots of the form a1/nωk for 0 ≤ k < n. Thus the splitting field for Xn − a
over Q is Q(a1/n, ω).



202 Introduction to Abstract Algebra

8.7 Structure of finite fields

Some finite fields made their appearance in Chapter 7. In the final two
sections of this chapter, we undertake a more comprehensive study, starting
with an observation about finite abelian groups.

PROPOSITION 8.31
Let A be a finite abelian group. Let x be an element of A whose order dx is

maximal. Then for each element y of A, the order dy of y divides dx.

PROOF If dy does not divide dx, then dy has a prime factor p which
does not divide dx. Since gcd(p, dx) = 1, there are integers l and m with
lp + mdx = 1.

Now z = ydy/p has order p. Consider the subgroup 〈xz〉 of A. It contains

〈(xz)lp〉 = 〈xlpzlp〉 = 〈x1−mdx〉 = 〈x〉
as a subgroup of order dx, and

〈(xz)mdx〉 = 〈xmdxzmdx〉 = 〈z1−lp〉 = 〈z〉
as a subgroup of order p. By Lagrange’s Theorem, the order of xz is a multiple
of pdx. This contradicts the maximality of dx.

PROPOSITION 8.32 (Multiplicative groups of finite fields.)
Let K be a finite field. Then the group K∗ of nonzero elements of K is cyclic.

PROOF Let e be an element of K∗ of maximal (multiplicative) order d.
By Proposition 8.31, each element of K∗ is a root of the polynomial Xd − 1.
By Proposition 7.24 (page 166), |K∗| ≤ d. On the other hand, d = |〈e〉| is a
divisor of |K∗|, by Lagrange’s Theorem. Thus K∗ is the cyclic group 〈e〉.

An element e of a finite field K is called a primitive element if K∗ = 〈e〉
— compare Study Project 3 in Chapter 7. Now if F is a subfield of a finite
field E, the additive group (F, +, 0) of F is a subgroup of the additive group
(E, +, 0) of E. Lagrange’s Theorem then shows that the order |F | of F is a
divisor of the order |E| of E. In fact, a much stronger statement is true.

PROPOSITION 8.33 (Additive groups of finite fields.)
Let E be a finite field, with a subfield F . Then the additive group (E, +, 0) of
E is isomorphic to a power of the additive group (F, +, 0) of F . In particular,
the order |E| of E is a power of the order |F | of F .
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PROOF Let e be a primitive element of E. Let j : F ↪→ E be the inclusion
of F in E. The Substitution Principle (Theorem 6.39, page 145) gives a unique
ring homomorphism je : F [X] → E with je(X) = e. The ring kernel of je in
the principal ideal domain F [X] is the set p(X)F [X] of multiples of a certain
polynomial p(X). If the degree of p(X) is m, Proposition 7.31 (page 169)
shows that the additive group of F [X]/p(X)F [X] is isomorphic to (F, +, 0)m.

Each nonzero element of E, as a power er of e, appears as je(Xr) in the
image of je. Thus je(F [X]) = E. The First Isomorphism Theorem for Rings
(Theorem 6.34, page 140) applied to je : F [X] → E yields the ring isomor-
phism

F [X]/p(X)F [X] ∼= E .

It follows that (E, +, 0) is isomorphic to the power (F, +, 0)m of (F, +, 0).

PROPOSITION 8.34 (Prime subrings of finite fields.)
Let K be a finite field. Then the prime subring of K is the field Z/p of

integers modulo a prime number p.

PROOF Since K is finite, its prime subring is finite, and thus of the form
Z/d for a positive integer d. If d is composite, say d = ab with 1 < a, b < d,
then a · b = 0 in K. This cannot happen in the integral domain K.

COROLLARY 8.35
The additive group (K, +, 0) of the finite field K is isomorphic to a power

(Z/p,+, 0)n of the group (Z/p, +, 0) of integers modulo p under addition. In
particular, the order |K| is a power pn of the prime number p.

PROOF Set E = K and F = Z/p in Proposition 8.33.

Proposition 8.34 shows that the characteristic of a finite field K is a prime
number p. Now in a ring R of characteristic p, the Frobenius map

ϕ : R → R;x 7→ xp

is a ring homomorphism (Exercise 45 in Chapter 6). In an integral domain of
characteristic p, the Frobenius map is injective (Exercise 35).

PROPOSITION 8.36 (Subfields and the Frobenius map.)
Let K be a field of characteristic p. Then for each natural number r, the

subset
L = {x | ϕr(x) = x}

of K forms a subfield of K.
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PROOF The set L is nonempty, indeed ϕr(1) = 1. Now suppose that x
and y are elements of L. Then

ϕr(x− y) = ϕr(x)− ϕr(y) = x− y

and
ϕr(x · y) = ϕr(x) · ϕr(y) = x · y ,

so L is a unital subring of the integral domain K. As such, L is an integral
domain. Each element of L is a root of the polynomial Xm −X, with m =
pr, over the field Z/p. Proposition 7.24 (page 166) shows that the set L is
finite. By Proposition 7.16 (page 162), it follows that the integral domain L
is actually a subfield of K.

8.8 Galois fields

Corollary 8.35 shows that the only possible orders for a finite field are the
powers of a prime number. The following theorem shows that for each power
q = pn of a prime number p (with n > 1), there is a field of order q. To
within isomorphism, this field is unique. It is known as the Galois field GF(q)
of order q. In this notation, the field Z/p of integers modulo p is written as
GF(p).

THEOREM 8.37 (Classification of finite fields.)
Let q = pn be a power of a prime number p, with positive index n.

(a) There is a field GF(q) of order q.

(b) Each field K of order q is isomorphic to GF(q).

PROOF (a): Consider the splitting field E of the polynomial Xq −X in
Z/p[X]. The set of roots of Xq −X in E is the subset

GF(q) = {x | ϕn(x) = x}

of E. By Proposition 8.36, GF(q) is a subfield of E. In fact, since Xq − X
splits over GF(q), we have E = GF(q). Now the derivative of Xq −X is

qXq−1 − 1 = pnXq−1 − 1 = −1 ,

which does not have any factor of positive degree. Theorem 8.20 shows that
Xq −X, as a polynomial of degree q, has no repeated roots in any extension
field. Thus its set GF(q) of roots has exactly q elements.
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(b): If K is a field of order q, Proposition 8.34 shows that K contains Z/p

as a subfield. Since K∗ is a cyclic group of order q − 1, each nonzero element
of K is a root of the polynomial Xq − X in Z/p[X], while 0 is certainly a
root. Thus K is a splitting field of the polynomial Xq − X in Z/p[X]. As
such, it is isomorphic to the splitting field GF(q) for Xq −X over Z/p[X], by
Theorem 8.29.

For a prime power q = pn, the final question concerns the possible subfields
of GF(q). By Proposition 8.33, the only possible orders for subfields are
the powers pr in which r divides n. Conversely, for such a power m = pr,
Proposition 8.36 shows that GF(q) does have a subfield

L = {x | ϕr(x) = x}

consisting of the roots of the polynomial Xm−X in GF(q). By Theorem 8.20,
this polynomial has no repeated roots, so L is a subfield of order m = pr.
Furthermore, it is the unique subfield of this order. Indeed, the elements of
any subfield K of order pr would consist of roots of Xm−X, and would thus
lie in L. We summarize as follows.

PROPOSITION 8.38 (Subfields of finite fields.)
Let q = pn be a power of a prime number p, with positive index n. The only

possible orders of subfields of GF(q) are the powers pr for a divisor r of n.
For each such power m = pr, there is a unique subfield GF(m) of GF(q).

For a prime number p, the subfields of GF(p72) are displayed in Figure 8.2.
Note that this figure is essentially just a relabelled version of Figure 1.3, which
displayed the positive divisors of 72.

GF(p)

6

-

GF(p3) -

6

GF(p2)

6
GF(p6)

6

-

-

GF(p4) -

GF(p12) -

6

6

GF(p8)

6
GF(p24)

6
GF(p9) - GF(p18) - GF(p36) - GF(p72)

FIGURE 8.2: The subfields of GF(p72).
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8.9 Exercises

1. Let a be a nonzero element of a zero ring A (compare Example 6.6, page
128). Show that a does not factorize as the product a = b · c of any pair
of elements b and c of A.

2. Let u be a unit of an integral domain D. Show that a nonzero, nonunit
element a of D is irreducible if and only if ua is irreducible.

3. Let A be a matrix in the ring Z[
√−3 ] of Example 8.6. If det(A) is a

prime number, show that A is irreducible.

4. Give an example of an irreducible element A of Z[
√−3 ] for which det(A)

is a composite number.

5. Show that the union (8.4) of the chain (8.3) is an ideal of the ring R.

6. Consider the ring RR of all functions f : R → R, with componentwise
unital ring structure (compare Example 6.12, page 130). For each nat-
ural number n, define

Jn = {f : R→ R | f(x) = 0 if x > n} .

(a) Show that Jn is an ideal of RR for each natural number n.

(b) Show that

J0 ↪→ J1 ↪→ . . . ↪→ Jn ↪→ Jn+1 ↪→ . . .

is an ascending chain of ideals in RR.
(c) Show that the ideal Jn is a proper subset of the ideal Jn+1 for each

natural number n.

(d) Conclude that RR does not satisfy the ascending chain condition.

7. Let D be an integral domain. Show that the following two conditions
are equivalent:

(a) Each nonzero, noninvertible element a of D factorizes as a product
of irreducibles in D;

(b) D has no ascending chain

a0D ↪→ a1D ↪→ . . . ↪→ anD ↪→ an+1D ↪→ . . .

of principal ideals with anD properly contained in an+1D for each
natural number n.
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8. A ring R is said to satisfy the descending chain condition, or DCC , if
for each descending chain

. . . Jn ↪→ Jn−1 ↪→ . . . ↪→ J1 ↪→ J0 = R

of ideals Jn of R, there is a natural number N such that Jm = JN for
all m ≥ N . Suppose that an integral domain D satisfies the descending
chain condition. Show that D is a field.

9. Show that the integer 12 may be factored as a product of irreducibles
in Z in 12 different ways (ordering the factors).

10. Define a relation A on an integral domain D by setting x A y if and
only if x = u · y for some u in D∗.

(a) Show that A is an equivalence relation on D.

(b) Show that the group D∗ of units of D is the equivalence class of 1
under the equivalence relation A.

(c) Show that {0} is the equivalence class of 0 under the equivalence
relation A.

11. Show that (3.2) gives the associate classes in Z.

12. Let F be a field, and let p(X) be a nonzero, nonunit element of the
integral domain F [X] of polynomials over F . Show that p(X) is the
associate of a unique monic polynomial in F [X].

13. Let D be an integral domain, and let IdD be the set of ideals of D.
Show that the relation of being associate is the kernel relation kerα of
the function

α : D → Id D; a 7→ aD .

14. Verify that the set J of (8.8) is an ideal of the integral domain D.

15. Show that the ring Z[
√−3 ] of Example 8.6 is not a principal ideal

domain.

16. Show that each field F is a subfield of the field F (X) of rational functions
over F — compare Example 7.47, page 177.

17. If E is an extension field of a field F , show that E(X) is an extension
field of F (X).

18. Find the inverse of a nonzero element x + iy of Q(i).

19. Find the inverse of a nonzero element x + y
√

5 of the field Q(
√

5) =
{x + y

√
5 | x, y in Q}.
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20. Find a monic polynomial p(X) in Q[X] such that the quotient field
Q[X]

/
p(X)Q[X] is isomorphic to the field Q

(√
1 +

√
5
)
.

21. Show that Q(
√

2,
√

3) = Q(
√

2 +
√

3).

22. Verify the claims of Proposition 8.19.

23. Let f(X) = X4 + X2 + 1 in Z/2[X]. Show that f(X) is a solution of
the differential equation Df(X) = 0.

24. Let F be a field of characteristic zero. Show that the only solutions
f(X) to the differential equation Df(X) = 0 in F [X] are the constant
polynomials f(X) = c for c in F .

25. Specify a splitting field for the quadratic equation

f(X) = X2 + X + 1

over Q.

26. Specify a splitting field for the quadratic equation

f(X) = X2 + X + 1

over Z/2.

27. Specify the splitting field for X3 − 2 over Q.

28. Find the smallest positive integer n for which the splitting field of the
polynomial

X2 + 4X + 2

over Q is Q (
√

n).

29. Determine the splitting field for

X3 + 2X2 + 4X + 8

over Q.

30. Determine the splitting field for

X4 + 10X3 + 100X2 + 1000X + 10000

over Q. (Hint: Set n = 5 and a = 105 in Example 8.30.)

31. Show that the fields Q(
√

2) and Q(
√

3) are not isomorphic.

32. Give an example of a finite group G with two elements x and y, such
that x has maximal order dx in G, while the order dy of y is not a divisor
of dx. Why does this not contradict Proposition 8.31?
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33. In the proof of Proposition 8.33, show that the polynomial p(X) is
irreducible in F [X].

34. (a) Show that there are no nontrivial finite subgroups in an infinite
cyclic group.

(b) Give an example of an infinite field K whose group K∗ of nonzero
elements is not cyclic.

35. Let p be a prime number.

(a) Let R be an integral domain of characteristic p. Show that the
Frobenius map

ϕ : R → R; x 7→ xp

is injective.

(b) Let R be a finite field of characteristic p. Show that the Frobenius
map

ϕ : R → R; x 7→ xp

is surjective.

(c) Show that a polynomial f(X) in Z/p[X] is the image ϕ
(
g(X)

)
of

some polynomial g(X) under the Frobenius map

ϕ : Z/p[X] → Z/p[X]

if and only if it is a solution of the differential equation Df(X) = 0.

(d) Show that the field Z/p(X) of rational functions over the integral
domain Z/p has characteristic p.

(e) Show that the Frobenius map

ϕ : Z/p(X) → Z/p(X)

fails to be surjective.

36. Consider the following ideals in the ring R = Z/2[X] of polynomials
over Z/2:

J1 = (X3 + X + 1)Z/2[X] ,

J2 = (X3 + X2 + 1)Z/2[X] ,

J3 = (X3 + X2 + X + 1)Z/2[X] .

(a) Show that the quotient rings R/J1 and R/J2 are isomorphic.

(b) Show that the quotient rings R/J1 and R/J3 are not isomorphic.

37. Let F be a finite field, and let n be a positive integer. Show that there
is an irreducible polynomial of degree n in F [X].
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38. Let p be a prime number, and let m and n be positive integers.

(a) Show that pm − 1 is a factor of pmn − 1. (Hint: Use Lagrange’s
Theorem, or Exercise 31 from Chapter 7.)

(b) Let e be a primitive element of GF(pmn). Let r be the integer

pmn − 1
pm − 1

.

Show that the subfield GF(pm) of GF(pmn) consists of 0 and the
powers of er.

39. Find the integer q such that GF(q) is the splitting field of the polynomial
X4 + X + 1 over Z/2.

40. Let p(X) be an irreducible polynomial of degree 5 in Z/2[X]. Let J
be the ideal p(X)Z/2[X] of Z/2[X]. Explain why X + J is a primitive
element of Z/2[X]

/
J .

41. For

ω = cos
2π

13
+ i sin

2π

13
,

show that Q(−ω) is the splitting field of X27 −X over Q.

42. What is the splitting field of X27 −X over GF(3)?

8.10 Study projects

1. The Sieve of Eratosthenes is a method for generating a partial listing
of the irreducible elements in an integral domain whose associate classes
may be ordered systematically. In its classical version, it produces a list
of prime numbers, as illustrated in Figure 8.3.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
2 3 5 7 9 11 13 15 17 19 21 23 25
2 3 5 7 11 13 17 19 23 25
2 3 5 7 11 13 17 19 23

FIGURE 8.3: The Sieve of Eratosthenes.
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The first row lists the integers bigger than 1 in increasing order. In the
second row, all the multiples of 2, except for 2 itself, are deleted. The
element to the right of 2 is 3, so at the next step all the proper multiples
of 3 are deleted. Continuing in this fashion, the sieve leaves a list of
the prime numbers. In Figure 8.3, the last row has just had the proper
multiples of 5 deleted. It already exhibits the list of primes less than 25.
The sieve may be used to produce a list of irreducible polynomials over
Z/2. For convenience during the calculation, a polynomial

f(X) = anXn + an−1X
n−1 + · · ·+ a1X + a0

in Z/2[X] may be represented by the binary expansion anan−1 . . . a1a0 of
the integer obtained by interpreting f(X) in Z[X], and then computing
f(2). For example, the polynomial X4 + X3 + 1 is represented as

24 + 23 + 1 = 11001

(i.e., the binary expansion of 25). The elements f(X) are then listed in
increasing order of the corresponding integers f(2).
Use the sieve to show that the following is a complete list of all the
irreducible polynomials over Z/2 of degree less than 5:

Degree 1 : X , X + 1 ;

Degree 2 : X2 + X + 1 ;

Degree 3 : X3 + X + 1 , X3 + X2 + 1 ;

Degree 4 : X4 + X + 1 , X4 + X3 + 1 , X4 + X3 + X2 + X + 1 .

2. The ring Z[X] is not a principal ideal domain (compare Exercise 18 in
Chapter 7). The goal of this project is to show that Z[X] is a unique
factorization domain. In particular, the converse of Theorem 8.16(b) is
false. Recall that Z[X] is an integral domain (Corollary 7.14, page 161).

(a) Show that the group of units Z[X]∗ of Z[X] is {±1}.
(b) Show that each prime number is an irreducible element of Z[X].
(c) Define a polynomial

p(X) = pnXn + pn−1X
n−1 + · · ·+ p1X + p0

of positive degree n in Z[X] to be primitive if pn > 0 and

gcd(pn, . . . , p0) = 1 .

Show that each element f(X) of the ring Q[X] of polynomials over
the rationals has a unique expression of the form

f(X) = qfpf (X)

with qf in Q and with pf (X) as a primitive polynomial in Z[X].
The rational number qf is known as the content of f(X).
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(d) Show that Z[X] = {f(X) in Q[X] | qf in Z}.
(e) For f(X) in Z[X], show that f(X) is primitive if and only if qf = 1.

(f) Let p be a prime number. Let θ : Z → Z/p;n 7→ n + pZ denote
reduction modulo p. Use the Substitution Principle to define a
homomorphism θX : Z[X] → Z/p[X]; f(X) 7→ f(X) . Suppose that
a polynomial f(X) in Z[X] has positive leading coefficient. Show
that f(X) is a primitive polynomial if and only if f(X) is nonzero
for each prime p.

(g) Prove Gauss’ Lemma: the product of two primitive polynomials is
primitive.

(h) Let f(X) and p(X) be elements of Z[X], with p(X) primitive. If
p(X) divides f(X) in Q[X], show that p(X) divides f(X) in Z[X].

(i) Let f(X) and g(X) be elements of Q[X]. If f(X) divides g(X) in
Q[X], show that pf (X) divides pg(X) in Z[X].

(j) Let f(X) and g(X) be elements of Z[X]. If f(X) and g(X) have
a common nonconstant factor in Q[X], show that they also have a
common nonconstant factor in Z[X].

(k) Show that if a nonconstant polynomial is irreducible in Z[X], it is
also irreducible in Q[X].

(l) Let f(X) be an element of Z[X] with positive leading coefficient.
Show that f(X) is irreducible in Z[X] if and only if it is a prime
number, or is a primitive polynomial that is irreducible in Q[X].

(m) Show that each irreducible element of Z[X] is prime. Conclude
that Z[X] is a unique factorization domain.

3. Eisenstein’s Criterion and cyclotomic polynomials. Section 7.6
noted that it may be very tricky to decide whether a given polynomial is
irreducible or not. One of the numerous tricks available is Eisenstein’s
Criterion for the irreducibility over Q[X] of a polynomial f(X) from
Z[X]. A polynomial

f(X) = fnXn + fn−1X
n−1 + · · ·+ f1X + f0 (8.13)

with integral coefficients fn, . . . , f0 satisfies the criterion if there is a
prime number p for which

p - fn , p | fn−1 , . . . , p | f0 , p2 - f0 . (8.14)

(a) Show that no constant integral polynomial can satisfy Eisenstein’s
Criterion (8.14).

(b) Suppose that an integral polynomial (8.13) satisfies Eisenstein’s
Criterion (8.14). Suppose that there is a proper factorization

f(X) = g(X)h(X) (8.15)
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in Z[X]. Consider the corresponding factorization

f(X) = g(X)h(X) (8.16)

in Z/p[X] — compare (f) in Study Project 2. Show that (8.16)
reduces to

f(X) = fnXn = g(X)h(X)

in the unique factorization domain Z/p[X]. Since

X | g(X) and X | h(X)

in Z/p[X], conclude that

g(0) = h(0) = 0

in Z/p or
p | g(0) and p | h(0)

in Z. Obtain a contradiction to the final condition of Eisenstein’s
Criterion (8.14).

(c) Using (k) in Study Project 2, show that an integral polynomial
(8.13) satisfying Eisenstein’s Criterion is irreducible over Q[X].

(d) For a prime number p, the p-th cyclotomic polynomial is

Φp(X) =
Xp − 1
X − 1

= Xp−1 + Xp−2 + · · ·+ X + 1

— compare Exercise 31 in Chapter 7. Use Eisenstein’s Criterion,
and Exercise 44 in Chapter 6, to show that Φp(1+X) is irreducible
over Q[X]. Conclude that Φp(X) is irreducible over Q[X].

8.11 Notes

Section 8.2

A. “Emmy” Noether was a German mathematician who lived from 1882 to
1935.

Section 8.3

Many treatments of factorization introduce the concept of a “Euclidean
domain,” as an integral domain in which a version of the Division Algorithm
is available. Elements of the domain are weighted, so that remainders have
lesser weight than divisors. However, it appears that there is no complete
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agreement between different sources about the multiplicativity properties that
should be demanded of the weighting function. For this reason, we refrain
from a discussion of Euclidean domains, merely noting the use of the Division
Algorithm to show that Z, and rings of polynomials over fields, are principal
ideal domains.

Section 8.7

Proposition 8.32 could have been derived from the structure theorem for
finitely generated abelian groups (Theorem 9.56), while Proposition 8.33 may
be proved by regarding E as a finite-dimensional vector space over F (compare
Section 9.7). The proofs given here are designed to depend only on concepts
that have already been encountered in the text.

Section 8.8

E. Galois was a French mathematician who lived from 1811 to 1832.

Section 8.10

Eratosthenes (Eρατoσθενης) was a Greek mathematician and geographer
who lived from around 276 to 194 B.C.

F.M.G. Eisenstein was a German mathematician who lived from 1823 to
1852.



Chapter 9

MODULES

In Chapter 6, rings were introduced axiomatically (Definition 6.1, page 127),
based on the examples of the integers Z, the reals R, and the ring of 2 × 2
real matrices. On the other hand, the axiomatic definition of an abstract
group (Definition 4.14, page 71) was founded on the general class of concrete
groups of permutations, while Cayley’s Theorem (Section 5.6) showed that
each abstract group is isomorphic to a group of permutations. In this chapter,
we investigate the corresponding general class of concrete rings, namely rings
of endomorphisms (of abelian groups), and the accompanying concept of a
module. For fields, modules are just vector spaces. For the ring of integers,
modules are just abelian groups. Thus modules capture the features that are
common to vector spaces and abelian groups, providing a general context for
the pervasive phenomenon of linearity.

9.1 Endomorphisms

Suppose that (A,+, 0) is an abelian group. An endomorphism θ of A is a
group homomorphism θ : A → A from A to A. (The prefix “endo-” suggests
that after leaving the domain A, the homomorphism θ goes back in to A
again, as a codomain.) Endomorphisms are not required to be injective or
surjective. In particular, the constant map

0A : A → A; a 7→ 0 (9.1)

sending each element of A to 0 is an endomorphism of A, known as the zero
map. Another endomorphism of A is the identity map idA on A, often written
as

1A : A → A; a 7→ a (9.2)

using the symbol 1, in parallel with the use of 0 in (9.1).

Example 9.1 (Endomorphisms of integers modulo 2.)
Consider the abelian group (Z/2, +, 0) of integers modulo 2 under addition.

The only endomorphisms of (Z/2, +, 0) are the zero map (9.1) and the identity

215
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map (9.2). Indeed, an endomorphism θ of Z/2 is the zero map if θ(1) = 0,
and is the identity map if θ(1) = 1.

Example 9.2 (Endomorphisms of the trivial group.)
Consider the trivial abelian group {0}. The only endomorphism of {0} is the
zero map (9.1), which coincides with the identity map (9.2) in this case.

Example 9.3 (Multiples.)
Let (A, +, 0) be an abelian group. For each integer n, the map

µn : A → A; a 7→ na , (9.3)

sending a group element a to its multiple na, is an endomorphism of A. Taking
the integer n = 0 gives the zero map (9.1). Taking the integer n = 1 gives the
identity map (9.2).

Example 9.4 (Left multiplication in rings.)
Let (R, +, ·) be a ring, with additive group (R, +, 0). Let r be an element of
R. As discussed in Section 6.2, the left multiplication

R → R; x 7→ r · x (9.4)

by r is an endomorphism of (R, +, 0).

(a) For r = 0, the left multiplication (9.4) is the zero map (9.1).

(b) If R is unital, and r = 1, then the left multiplication (9.4) is the identity
map (9.2).

Example 9.5 (Scalar multiplication.)
Consider the abelian group R1

2 of 2-dimensional real column vectors with
componentwise addition. For each real number λ, the scalar multiplication

λ : R1
2 → R1

2;
[
x1

x2

]
7→

[
λx1

λx2

]

is an endomorphism of R1
2.

Given two real scalars λ and µ in Example 9.5, we have the equality

(λ− µ)
[
x1

x2

]
= λ

[
x1

x2

]
− µ

[
x1

x2

]
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for vectors [
x1

x2

]

in R1
2. More generally, the difference θ−ϕ of two endomorphisms θ and ϕ of

an abelian group A is given by

(θ − ϕ)(a) = θ(a)− ϕ(a) (9.5)

for each element a of A.

PROPOSITION 9.6 (The difference of two endomorphisms.)
Let A be an abelian group. Then the difference (9.5) of two endomorphisms

θ and ϕ of A is again an endomorphism of A.

PROOF For elements a and b of A, we have

(θ − ϕ)(a + b) = θ(a + b)− ϕ(a + b)
= θ(a) + θ(b)− ϕ(a)− ϕ(b)
= θ(a)− ϕ(a) + θ(b)− ϕ(b)
= (θ − ϕ)(a) + (θ − ϕ)(b) .

The first and last equalities use the definition (9.5) of the difference. The
second equality holds since θ and ϕ are group homomorphisms. The third
equality holds since A is abelian.

COROLLARY 9.7 (The additive group of endomorphisms.)
Consider the group AA of all maps from A to (A, +, 0), equipped with the

componentwise abelian group structure (AA, +, 0) given by Definition 4.34(c).
Then the set of all endomorphisms of the abelian group A forms a subgroup
of AA.

PROOF The set of endomorphisms of the abelian group A is nonempty,
since it contains the zero endomorphism (9.1). Proposition 9.6 shows that
the set of endomorphisms satsifies the closure property required by Proposi-
tion 4.43 (page 80) for a subgroup — compare Remark 4.44.

DEFINITION 9.8 (The endomorphism group End A.) The set of
endomorphisms of an abelian group (A, +, 0) is denoted by End(A,+, 0), or
just End A. As a group with the structure given by Corollary 9.7, it is known
as the endomorphism group (EndA, +, 0) of the abelian group A.

Along with its closure under the subtraction (9.5), the endomorphism set
End A of an abelian group A is also closed under functional composition.
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Indeed, if θ and ϕ are endomorphisms of A, then so is θ ◦ ϕ — compare
Exercise 4 in Chapter 5. The full structure is described as follows.

THEOREM 9.9 (The endomorphism ring.)
Let (A, +, 0) be an abelian group. Then the set EndA of endomorphisms of A
forms a unital ring (End A,+, ◦). The additive group structure (End A, +, 0)
follows Definition 9.8:

(θ + ϕ)(a) = θ(a) + ϕ(a)

for θ, ϕ in End A and a in A. The monoid structure (End A, ◦, 1) is given by
functional composition:

(θ ◦ ϕ)(a) = θ
(
ϕ(a)

)

for θ, ϕ in EndA and a in A. The zero element 0 is the zero map (9.1), while
the unit element is the identity map (9.2).

PROOF In order to obtain (EndA, +, ◦) as a ring, the distributive laws
must be verified. Consider endomorphisms θ, ϕ, and ψ of A. Then for each
element a of A, we have

θ ◦ (ϕ + ψ)(a) = θ
(
ϕ(a) + ψ(a)

)

= θ ◦ ϕ(a) + θ ◦ ψ(a)
= (θ ◦ ϕ + θ ◦ ψ)(a)

and

(ϕ + ψ) ◦ θ(a) = (ϕ + ψ)
(
θ(a)

)

= ϕ ◦ θ(a) + ψ ◦ θ(a)
= (ϕ ◦ θ + ψ ◦ θ)(a) .

Thus the left distributive law θ ◦ (ϕ+ψ) = θ ◦ϕ+ θ ◦ψ and right distributive
law (ϕ + ψ) ◦ θ = ϕ ◦ θ + ψ ◦ θ hold in EndA, as required.

For an abelian group A, the ring End A or (End A,+, ◦) of Theorem 9.9 is
known as the endomorphism ring of A.

Example 9.10 (Groups of order 2.)
Let A be an abelian group of order 2. Then the endomorphism ring EndA

is isomorphic to the ring of integers modulo 2 (Exercise 7).
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9.2 Representing a ring

Cayley’s Theorem shows that an abstract group (G, ·, 1) is isomorphic to a
subgroup of the symmetric group G! on the underlying set G. Here are the
analogous results for rings.

THEOREM 9.11
Let (R, +, ·) be a ring, with additive group (R, +, 0). For each element r of

R, consider the left multiplication

λr : R → R; x 7→ r · x

by r. Then there is a ring homomorphism

Λ : R → End(R, +, 0); r 7→ λr (9.6)

from R to the endomorphism ring of the additive group (R, +, 0) of R.

PROOF For elements r, s, and x of R, we have

(λr + λs)(x) = λr(x) + λs(x) = r · x + s · x = (r + s) · x = λr+s(x)

by the left distributive law and

λr ◦ λs(x) = r · (s · x) = (r · s) · x = λr·s(x)

by the associative law, so that Λ is a ring homomorphism.

COROLLARY 9.12 (Cayley’s Theorem for unital rings.)
Let (R, +, ·) be a unital ring. Then the map

Λ : R → End(R, +, 0)

of (9.6) is an injective homomorphism of unital rings.

PROOF For elements r and s of R, the equation λr = λs implies

r = r · 1 = λr(1) = λs(1) = s · 1 = s ,

so the map
Λ : R → End R; r 7→ λr

is injective. Moreover, λ1 is the identity map idR, so that Λ is a unital ring
homomorphism.
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Example 9.13
If (R, +, ·) is not unital, it may happen that the ring homomorphism

Λ : R → End(R, +, ·); r 7→ λr

of (9.6) is not injective. Consider the subring R = {0, 2} of the ring of
integers modulo 4. Since 2 · 2 = 0 = 2 · 0, the left multiplications λ2 and λ0

coincide. In this case, the image of (9.6) is trivial, consisting only of the zero
endomorphism.

9.3 Modules

Let R be a unital ring. According to Corollary 9.12, there is a unital ring
homomorphism

R → End(R, +, 0)
from R to the endomorphism ring End(R, +, 0) of the additive group (R, +, 0)
of R. In this case the abelian group (R, +, 0) is directly obtained as part of
the ring structure on R. However, we may just as well consider a unital ring
homomorphism

R → End(A, +, 0)
from R to the endomorphism ring End(A,+, 0) of an arbitrary abelian group
(A, +, 0).

DEFINITION 9.14 (Modules with explicit structure map.) Let R
be a unital ring, and let (A, +, 0) be an abelian group. Suppose that there is a
unital ring homomorphism

σ : R → End(A, +, 0); r 7→ σr (9.7)

from R to the endomorphism ring EndA of the group A.

(a) The abelian group A is described as a (unital) (left) module over R, or
a (unital) (left) R-module (A,+, σ), with structure map (9.7).

(b) For each element r of R, the endomorphism

σr : A → A; a 7→ σr(a)

is described as the action of the ring element r on A.

REMARK 9.15 Since σ1 = idA in (9.7), we have

σ1(a) = a

for each element a of A.



MODULES 221

Example 9.16 (Scalar action.)
Let F be a field. Consider the abelian group F 1

2 of 2-dimensional column
vectors [

x1

x2

]

with componentwise structure. For each element λ of F , consider the action

σλ : F 1
2 → F 1

2 ;
[
x1

x2

]
7→

[
λx1

λx2

]

of λ on F 1
2 by scalar multiplication (compare Example 9.5 for the real case).

Then F 1
2 becomes a module (F 1

2 ,+, σ) over F with structure map

σ : F → EndF 1
2 ; λ 7→ σλ

(Exercise 8).

Example 9.17 (Conjugated action.)
Consider the field C of complex numbers. For each element λ of C, define

the action

δλ : C1
2 → C1

2;
[
x1

x2

]
7→

[
λx1

λx2

]

of λ on C1
2 by scalar multiplication with the complex conjugate λ of λ. Then

C1
2 becomes a module (C1

2, +, δ) over C with structure map

δ : C→ EndC1
2;λ 7→ δλ

(Exercise 9).

Example 9.18 (Abelian groups as Z-modules.)
Let (A, +, 0) be an abelian group. Example 9.3 noted that for each integer

n, the map µn : A → A; a 7→ na, sending an element a of A to the multiple
na, is an endomorphism of A. Now consider the map

µ : Z→ End(A,+, 0); n 7→ µn . (9.8)

Since
µm+n(a) = (m + n)a = ma + na = µm(a) + µn(a)

by the Law of Exponents (5.13), and

µmn(a) = (mn)a = m(na) = µm ◦ µn(a)

for elements a of A and integers m, n, with µ1(a) = a = idA(a), the map
(9.8) gives a unital ring homomorphism. Thus the abelian group (A, +, 0) is
a left Z-module (A, +, µ). In fact, (9.8) represents the only possible choice for
a structure map making A into a Z-module (Exercise 10).
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Definition 9.14 specifies modules using the structure map (9.7) as a unital
ring homomorphism. However, it is often easier to recognize the presence of
a module directly.

PROPOSITION 9.19 (Characterizing modules.)
Let R be a unital ring, and let (A, +, 0) be an abelian group. Then A is a left
R-module if and only if there is a map

σr : A → A; a 7→ σr(a) ,

for each element r of R, such that the following properties are satisfied:

(a) σr(a + b) = σr(a) + σr(b) ;

(b) σr+s(a) = σr(a) + σs(a) ;

(c) σrs(a) = σr ◦ σs(a) ;

(d) σ1(a) = a

for r, s in R and a, b in A.

PROOF First, suppose that A is a left R-module, by virtue of a unital
ring homomorphism (9.7). Then (a) holds since σr is an endomorphism of
(A, +, 0), while (b) and (c) hold since σ is a ring homomorphism, and (d)
holds since the ring homomorphism σ is unital (Remark 9.15).

Conversely, suppose that the conditions (a) – (d) are satisfied. By (a), each
map σr, for r in R, is an endomorphism of (A, +, 0). Thus a function

σ : R → End(A, +, 0); r 7→ σr

is specified. By (b) and (c), the function σ is a ring homomorphism. By (d),
the ring homomorphism σ is unital.

Example 9.20 (Rings as modules over subrings.)
Let R be a unital subring of a unital ring A. For each element r of R, and

for each element a of A, define σr(a) = ra. Condition (a) of Proposition 9.19
is satisfied by the left distributive law in the ring A. Condition (b) follows
from the right distributive law. Condition (c) follows by the associative law,
and (d) holds since A is unital. Thus A is a left R-module, denoted by RA.

Consider the scalar action of Example 9.16 for the field F = C of complex
numbers, and contrast it with the conjugated action of Example 9.17. In each
of these two cases, the abelian group C1

2 of 2-dimensional complex column
vectors becomes a module over C. Example 9.16 yields the module (C1

2,+, σ),
while Example 9.17 yields the module (C1

2, +, δ). When comparing the two
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examples, it is critical to distinguish the structure maps. However, in most
cases there is only one structure map in question, and there is no need to keep
mentioning it explicitly all the time. Proposition 9.19 allows us to simplify
the notation for an R-module. Instead of writing σr(a), we just write r · a or
ra for a ring element r and module element a. The conditions (a) through (d)
of Proposition 9.19 become the axioms (a) through (d) of the following defi-
nition. Proposition 9.19 is then interpreted as saying that the new definition
is consistent with the previous Definition 9.14.

DEFINITION 9.21 (Modules with implicit structure map.) Let R
be a unital ring, and let (A,+, 0) be an abelian group. Suppose that for each
element r of R, and for each element a of A, an element r · a or ra of A is
defined. Suppose that the following properties are satisfied:

(a) r · (a + b) = r · a + r · b ;

(b) (r + s) · a = r · a + s · a ;

(c) (rs) · a = r · (s · a) ;

(d) 1 · a = a

for r, s in R and a, b in A. Then the abelian group A is described as a (unital)
(left) module over R, or a (unital) (left) R-module (A,+, R).

9.4 Submodules

Let R be a unital ring. Modules over the ring R are abstract algebras
in their own right, just like groups, rings, or any of the other algebras we
have been studying. Thus there is a concept of a submodule, analogous to
subgroups or subrings. We use the notation of Definition 9.21.

DEFINITION 9.22 (Submodules.) Let R be a unital ring. Let (A, +, R)
be a left R-module. Then a subset B of A is said to be an R-submodule of A,
or just a submodule of M , if B is a subgroup of the abelian group (A,+, 0),
and r · b lies in B for each r in R and b in B.

Using Remark 4.44 (page 80), we see that a subset B of an R-module
(A, +, R) is a submodule if:

• B is nonempty;

• x− y lies in B if x, y lie in B;

• r · x lies in B for r in R and x in B.
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Example 9.23 (Ideals as submodules.)
Let R be a unital subring of a unital ring A. According to Example 9.20, A

becomes a left R-module RA, with the action r ·a defined by the multiplication
· in the ring (A,+, ·) for r in R and a in A. Each ideal J of the ring A forms
an R-submodule of RA, since J is a subgroup of (A, +, 0), while r · j lies in J
(for r in R and j in J) by the absorptive property (6.16) of the ideal J .

In the theory of modules, one of the most fundamental concepts is the
notion of generating a submodule. In order to understand this concept, we
begin with a simple proposition. (Compare Exercise 30 in Chapter 4.)

PROPOSITION 9.24 (The intersection of submodules.)
Let (A, +, R) be a module over a ring R. Suppose that I is a set, and that

for each element i of I, there is a submodule Bi of A. Then the intersection
⋂

i∈I

Bi = {a | a lies in Bi for all i in I} (9.9)

is again a submodule of A.

PROOF Write B for the intersection (9.9).

• B is nonempty, since each submodule Bi contains 0.

• If a1 and a2 lie in each Bi, so does a1 − a2.

• If a lies in each Bi, so does r · a for each element r of R.

DEFINITION 9.25 Let X be a subset of a module A over a ring R.

(a) The submodule RX generated or spanned by X is the intersection of
all the submodules of A that contain X.

(b) An R-linear combination of elements of X is an element of A of the
form

r1 · x1 + r2 · x2 + . . . + rn · xn (9.10)

for a natural number n, elements x1, · · ·xn of X, and elements r1, . . . rn

of R. The elements r1, . . . rn of R are known as the coefficients of the
linear combination. If n = 0, the linear combination (9.10) is understood
to be the zero element 0 of A.

Rephrasing Definition 9.25(a), the submodule RX generated by a subset
X is the smallest submodule containing X. The following result provides an
explicit description of the submodule generated by a subset of a module, in
terms of linear combinations.
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THEOREM 9.26 (The submodule generated by a subset.)
Let X be a subset of a unital module (A, +, R) over a ring R. Then the

submodule RX generated by X is the set

{r1 · x1 + . . . + rn · xn | n in N , ri in R , xi in X} (9.11)

of all R-linear combinations of elements of X.

PROOF Write L for the set (9.11) of R-linear combinations of elements
of X. We must show that L = RX.

• Each submodule B of A that contains X also contains each R-linear
combination

r1 · x1 + . . . + rn · xn

of elements x1, . . . , xn of X. (A formal proof proceeds by induction
on the natural number n, using the closure properties for submodules
given in Definition 9.22 — see Exercise 16.) Thus each such submodule
B contains L. It follows that their intersection RX also contains L.

• Conversely, we must show that L contains RX. Now since A is unital,
each element x of X appears in L as the R-linear combination 1 · x.
Thus L contains X. Furthermore, L is a submodule of A:

– L is nonempty, since it contains 0 as the linear combination (9.10)
with n = 0 ;

– If L contains
x = r1 · x1 + . . . + rn · xn

and
x′ = r′1 · x′1 + . . . + r′n′ · x′n′ ,

then it contains x− x′ as

r1 · x1 + . . . + rn · xn + (−r′1) · x′1 + . . . + (−r′n′) · x′n′ ;

– If L contains
x = r1 · x1 + . . . + rn · xn ,

then it contains r · x (for each r in R) as

(rr1) · x1 + . . . + (rrn) · xn .

Since L is a submodule of A that contains X, it contains RX.
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COROLLARY 9.27 (Closure under linear combinations.)
A subset B of a module (A,+, R) over a ring R is a submodule of A if and

only if each linear combination

r1 · x1 + . . . + rn · xn

(with n in N, elements r1,. . . , rn in R and x1,. . . , xn in B) lies in B.

PROOF Set X = B in Theorem 9.26.

Example 9.28
Let R be a unital ring, and let A be the ring R[Y ] of polynomials over the ring
R in an indeterminate Y . Taking R as the subring of constant polynomials,
consider A as an R-module RA or (A, +, R) according to Example 9.20. Then
for each natural number n, the R-submodule of A generated by the set

{Y n, Y n−1, . . . , Y 2, Y, 1}

is the set of all polynomials

rnY n + rn−1Y
n−1 + . . . + r1Y + r0 (9.12)

of degree at most n. Note that in this example, the coefficients ri of (9.12)
as a linear combination — in the sense of Definition 9.25(b) — are just the
coefficients of (9.12) as a polynomial.

Attention will soon focus on modules that are generated by a finite subset.

DEFINITION 9.29 (Finitely generated modules.) A module (A, +, R)
over a ring R is said to be finitely generated if there is a finite subset X of
A such that A is generated by X.

Example 9.30 (Column vectors.)
For a field F , the F -module F 1

2 of 2-dimensional column vectors (compare
Example 9.16) is finitely generated, say by the subset

{[
1
0

]
,

[
0
1

] }
.

If the field F is infinite, note that F 1
2 itself is an infinite set.

Any finite module (A, +, R) is finitely generated (by its underlying set A).
On the other hand, the module A defined in Example 9.28 is not finitely
generated — see Exercise 19.
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9.5 Direct sums

Let R be a unital ring. We continue with the theme that R-modules form
another kind of abstract algebra, analogous to groups and rings. Accordingly,
given two R-modules (A, +, R) and (B, +, R), a function f : A → B is defined
to be an R-module homomorphism (or just a module homomorphism) if

f(x + y) = f(x) + f(y) (9.13)

and
f(r · x) = r · f(x) (9.14)

for r in R and x, y in A. The image f(A) of an R-module homomorphism
F : A → B is a submodule of B (Exercise 20). By (9.13), each R-module
homomorphism

f : (A, +, R) → (B,+, R)

is an abelian group homomorphism

f : (A,+, 0) → (B, +, 0) .

If R is the ring Z of integers, then (9.13) implies (9.14) — Exercise 21.
For a unital ring R, bijective R-module homomorphisms are described as

R-isomorphisms, or just isomorphisms if the context is clear. Two R-modules
A and B are said to be isomorphic, a relation that is written as A ∼= B, if
there is an R-module isomorphism b : X → Y . In particular, two Z-modules
A and B are isomorphic if and only if they are isomorphic as abelian groups.

For groups and rings, the idea of imposing componentwise structure was
used to define direct products. For R-modules, the same idea may also be
applied. However, since there are special properties that hold in the case of
modules, different terminology is used. (Compare Exercises 24 and 25.)

DEFINITION 9.31 (Direct sums.) Let R be a unital ring. Let n be a
positive integer. Let Ai be an R-module, for 1 ≤ i ≤ n. Then the (external)
direct sum A1 ⊕ · · · ⊕An or

⊕
1≤i≤n Ai is the set

{(a1, . . . , an) | ai in Ai for 1 ≤ i ≤ n}
equipped with the componentwise abelian group structure

(a1, . . . , an) + (a′1, . . . , a
′
n) = (a1 + a′n, . . . , an + a′n)

and componentwise actions

r · (a1, . . . , an) = (r · a1, . . . , r · an)

for r in R.
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Example 9.32 (Direct products of abelian groups.)
If A1, . . . , An are abelian groups, then the direct sum

A1 ⊕ · · · ⊕An

of the Z-modules A1, . . . , An is just the direct product

A1 × · · · ×An

of the abelian groups A1, . . . , An (compare Section 4.4). We thus speak of a
direct sum of abelian groups, as a synonym for the direct product.

Example 9.33 (Column vectors.)
Let F be a field. Consider F as a left F -module F F with the structure map
given by the ring multiplication, as in Example 9.20. Recall the F -module
F 1

2 of 2-dimensional column vectors with scalar action, as in Example 9.16.
Then the map

F F ⊕ F F → F 1
2 ; (x1, x2) 7→

[
x1

x2

]

is an F -module isomorphism (Exercise 22).

The following result characterizes modules (such as F 1
2 in Example 9.33)

that are isomorphic to direct sums.

THEOREM 9.34 (Recognizing direct sums.)
Let B be a unital module over a unital ring R. Let n be a positive integer.

Then the following conditions on B are equivalent:

(a) B is isomorphic to a direct sum

A1 ⊕A2 ⊕ . . .⊕An

of modules A1, . . . , An;

(b) There are submodules B1, . . . , Bn of B such that each element b of B
has a unique expression as a sum of the form

b = b1 + b2 + . . . + bn (9.15)

with bi in Bi for 1 ≤ i ≤ n;

(c) There are submodules B1, . . . , Bn of B such that B is isomorphic to
the direct sum B1 ⊕B2 ⊕ . . .⊕Bn.
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PROOF (c) implies (a): This is immediate.
(a) implies (b): For 1 ≤ i ≤ n, let Ai be the submodule

Ai =
{(

0, . . . , 0,

slot i︷︸︸︷
ai, 0, . . . , 0

) ∣∣∣ ai in Ai

}

of A1⊕ . . .⊕An. Each element a = (a1, . . . , an) of A1⊕ . . .⊕An has a unique
expression (a1, . . . , an) = (a1, 0 . . . , 0) + . . . + (0, . . . , 0, an) as a sum of the
form

a = a1 + . . . + an (9.16)

with ai = (0, . . . , 0, ai, 0, . . . , 0) in Ai for 1 ≤ i ≤ n. Consider the given
isomorphism as

β : A1 ⊕ . . .⊕An → B . (9.17)

For 1 ≤ i ≤ n, define the submodule Bi of B to be the image β
(
Ai

)
of the

submodule Ai of A1⊕ . . .⊕An. Since (9.17) is an isomorphism, each element
of B has a unique expression of the form β(a) for a in A1⊕ . . .⊕An. Applying
the isomorphism β to the unique expression (9.16) for a as a sum of respective
elements a1, . . . , an of A1, . . . , An we obtain the unique expression

β(a) = β(a1) + . . . + β(an)

of β(a) as a sum of elements of B1, . . . , Bn.
(b) implies (c): If (b) holds, there is a well-defined isomorphism

B → B1 ⊕B2 ⊕ . . .⊕Bn; b1 + b2 + . . . + bn 7→ (b1, b2, . . . , bn)

of R-modules.

COROLLARY 9.35

If B is isomorphic to the direct sum A1 ⊕ . . .⊕ An of modules A1, . . . , An,
then the submodules Bi of B, for which B is isomorphic to the direct sum
B1 ⊕ . . .⊕Bn, may be chosen so that Ai

∼= Bi for 1 ≤ i ≤ n.

PROOF For 1 ≤ i ≤ n, define αi : Ai → Ai; ai 7→ (0, . . . , 0, ai, 0, . . . , 0).
Then the desired isomorphism is β ◦ αi : Ai → Bi.

DEFINITION 9.36 (Internal direct sums.) A module B over a ring
R is described as an internal direct sum (of submodules B1, . . . , Bn) if it
satisfies the equivalent conditions of Theorem 9.34(b),(c) for some positive
integer n.
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Example 9.37 (Column vectors.)
Let F be a field. Consider the F -module F 1

2 of column vectors discussed in
Example 9.33. The module F 1

2 is the internal direct sum of the submodules

B1 =
{[

x
0

] ∣∣∣∣ x in F

}

and

B2 =
{[

0
x

] ∣∣∣∣ x in F

}

(Exercise 23).

Suppose that B1, . . . , Bn are submodules of a module B over a unital ring
R. The condition for B to be an internal direct sum of B1, . . . , Bn is the
existence and uniqueness of the expression (9.15) for elements b of B. It is
helpful to consider the existence and uniqueness questions separately. Write

B1 + B2 + . . . + Bn (9.18)

for the submodule of B that is generated by the union of the subsets B1, . . . ,
Bn of B. By Theorem 9.26, the set (9.18) comprises all the elements b of B
that have a (not necessarily unique) expression of the form

b = b1 + b2 + . . . + bn (9.19)

with bi in Bi for 1 ≤ i ≤ n (Exercise 26). Given the existence of expressions
of the form (9.19), their uniqueness is characterized as follows.

PROPOSITION 9.38
For a positive integer n, let B1, . . . , Bn be submodules of a module B. The

following conditions are equivalent:

(a) The submodule B1 + B2 + . . . + Bn of B is the internal direct sum of its
submodules B1, . . . , Bn;

(b) Each element b of B1 + . . . + Bn has a unique expression of the form

b = b1 + b2 + . . . + bn

with bi in Bi for 1 ≤ i ≤ n;

(c) The zero element 0 of B has a unique expression of the form

0 = z1 + z2 + . . . + zn

with zi in Bi for 1 ≤ i ≤ n.
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PROOF The equivalence of (a) and (b) follows directly by Definition 9.36.
Condition (c) is just a special case of condition (b). It remains to show that
(c) implies (b). Suppose that (c) holds. In that case, zi = 0 for 1 ≤ i ≤ n.
Suppose that an element b of B1 + . . . + Bn has expressions

b = x1 + . . . + xn = y1 + . . . + yn

with xi, yi in Bi for 1 ≤ i ≤ n. Then 0 = (x1 − y1) + . . . + (xn − yn) . By (c),
we have xi − yi = zi = 0 for 1 ≤ i ≤ n, so the expression for b is unique.

9.6 Free modules

We now begin the study of finitely generated modules. Let R be a unital
ring. Using the construction of Example 9.20, the underlying abelian group
(R,+, 0) becomes a left R-module RR, with action given by the multiplication
in the ring. Direct sums of a finite number of copies of RR, and modules
isomorphic to such direct sums, are very important. They are recognized
with the help of Proposition 9.38, using the concept of linear independence
introduced in the following definition.

DEFINITION 9.39 (Free modules and linear independence.) Let
A be a module over a unital ring R. Let l be a natural number, and let
X = {x1, . . . , xl} be an l-element subset of A.

(a) An expression
0 = r1x1 + . . . + rlxl (9.20)

of 0 as an R-linear combination of the elements of X is said to be
nontrivial if there is at least one nonzero coefficient r1, . . . , rl.

(b) The set X is said to be linearly independent (over R) if there is no
nontrivial expression (9.20) of 0 as a linear combination of the elements
of X. (In particular, the empty set is linearly independent.)

(c) If X is a linearly independent generating set for the R-module A, then
A is described as the free R-module over the generating set X. In this
case, the set X or sequence x1, . . . , xl is also known as a basis for A.

Example 9.40 (Standard bases.)
Let l be a positive integer. For a nontrivial unital ring R, write Rl for the

direct sum
l summands︷ ︸︸ ︷

RR⊕ . . .⊕ RR
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of l copies of the module RR. For 1 ≤ i ≤ l, consider the element

ei =
(
0, . . . , 0,

slot i︷︸︸︷
1, 0, . . . , 0

)

of Rl. The sequence e1, . . . , el, or the subset

El = {ei | 1 ≤ i ≤ l}
of Rl, are both known as the standard basis of Rl. Now R-linear combinations
of standard basis elements are easily computed:

r1e1 + . . . + rlel = (r1, . . . , rl)

for coefficients r1, . . . , rl in R. Thus the set El is linearly independent, and
Rl is the free R-module over the standard basis El. For the ring R of real
numbers, the standard basis E3 of R3 is illustrated in Figure 9.1.

XXXXXXXXXXXXXXXXXz

6

»»»»»»»»»»»»»»»»:

(1, 0, 0) = e1

(0, 1, 0) = e2

e3 = (0, 0, 1)u

u

u

R3

XXXXXXXX

»»»»»»»»

FIGURE 9.1: The standard basis E3 of R3.

The trivial R-module {0} is the free R-module over the empty generating
set. Expanding the notation of Example 9.40, it is convenient to denote {0}
by R0. General free modules over nonempty generating sets are described as
follows.

PROPOSITION 9.41 (Structure of free modules.)
Let R be a unital ring. Let A be a free R-module over a generating set

X = {x1, . . . , xl} with a positive number l of elements.
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(a) A is the internal direct sum of the submodules R{x1}, . . . , R{xl}.
(b) A is isomorphic to the module Rl of Example 9.40.

(c) Each element a of A has a unique expression as an R-linear combination

a = r1x1 + . . . + rlxl .

PROOF (a): For 1 ≤ i ≤ l, each element of R{xi} is of the form rixi

for some element ri of R. Since X is linearly independent, the submodules
R{x1}, . . . , R{xl} of A satisfy the condition (c) of Proposition 9.38. Since the
module A is generated by X, it becomes the sum A = R{x1} + . . . + R{xl}.
By condition (a) of Proposition 9.38, it follows that A is the internal direct
sum of the submodules R{x1}, . . . , R{xl}.

(b): For each 1 ≤ i ≤ l, there is an isomorphism

gi : RR → R{xi}; r 7→ rxi

from the module RR to the submodule R{xi} of A. Note that as an abelian
group homomorphism, the map gi is injective. Indeed rxi = 0 implies r = 0,
since the set X is linearly independent.

(c) now follows by condition (b) of Proposition 9.38 and the existence of
the isomorphisms gi for 1 ≤ i ≤ l.

The importance of free modules stems from the following.

THEOREM 9.42 (Universality property of free modules.)
Let A be a free R-module over a finite generating set X. Let j : X ↪→ A denote
the inclusion of X as a subset of A. Then for each function f : X → B from
X to the underlying set B of an R-module B, there is a unique R-module
homomorphism f : A → B with f = f ◦ j.

PROOF Suppose that X is the l-element subset {x1, . . . , xl} of A. For
natural numbers k not exceeding l, we will prove by induction on k that an
R-module homomorphism f : A → B with f = f ◦ j has to satisfy

f(r1x1 + . . . + rkxk) = r1f(x1) + . . . rkf(xk) (9.21)

for coefficients r1, . . . , rk in R. The induction basis is the case k = 0 of (9.21),
namely f(0) = 0. This must hold if f : (A, +, 0) → (B, +, 0) is to be a group
homomorphism. For the induction step, we have

f(r1x1 + . . . + rk−1xk−1 + rkxk)

= f(r1x1 + . . . + rk−1xk−1) + f(rkxk)

= f(r1x1 + . . . + rk−1xk−1) + rkf(xk)
= r1f(x1) + . . . + rk−1f(xk−1) + rkf(xk) .



234 Introduction to Abstract Algebra

The first two equalities hold since f is required to be a module homomorphism.
The last equality holds by the induction hypothesis, and by the consequence
f(xk) = f(xk) of the requirement f = f ◦ j.

Since A is generated by X, the case k = l of (9.21) defines the function
f : A → B uniquely as

f(r1x1 + . . . + rlxl) = r1f(x1) + . . . rlf(xl) .

Note that f is well defined, by Proposition 9.41(c). It remains to check that
the function f actually is a module homomorphism. But for elements ri, si,
r of R, we have

f

( l∑

i=1

rixi +
l∑

i=1

sixi

)
= f

( l∑

i=1

(ri + si)xi

)
=

l∑

i=1

(ri + si)f(xi)

=
l∑

i=1

rif(xi) +
l∑

i=1

sif(xi) = f

( l∑

i=1

rixi

)
+ f

( l∑

i=1

sixi

)

and

f

(
r

l∑

i=1

rixi

)
= f

( l∑

i=1

rrixi

)
=

l∑

i=1

rrif(xi)

= r
l∑

i=1

rif(xi) = rf

( l∑

i=1

rixi

)

as required.

Example 9.43 (Freeness of the group of integers.)
Consider the abelian group Z as the free Z-module Z1 over the standard

basis E1 = {1}. Theorem 9.42 states that for each abelian group G, and for
each element x of G, i.e., for each function f : {1} → G; 1 7→ x, there is
a unique group homomorphism f : Z → G with f(1) = x. This assertion
is just the special case of Theorem 5.26 (page 107), the universality of the
group of integers, in which the target group G is abelian. In the notation of
Theorem 5.26, the group homomorphism f is expx.

As an application of Theorem 9.42, we may compute the endomorphism
ring of each finite cyclic group. Note the choice of the unital ring R here.

PROPOSITION 9.44 (The endomorphism ring of a cyclic group.)
Let n be a positive integer. Then the map

End(Z/n, +, 0) → (Z/n, +, ·); θ 7→ θ(1) (9.22)

is a ring isomorphism.
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PROOF The abelian group (Z/n, +, 0) is the free Z/n-module over the
standard basis {1}. Each endomorphism θ of the abelian group (Z/n, +, 0) is
a Z/n-module homomorphism θ : Z/n → Z/n. By Theorem 9.42, each such
module homomorphism is uniquely specified as the extension f of a function
f : {1} → Z/n. Thus the map (9.22) is a bijection. It is straightforward to
verify that it is a ring homomorphism (Exercise 29).

9.7 Vector spaces

Modules over a field are traditionally known as vector spaces. Module
elements are known as vectors, and submodules are subspaces. Vector spaces
enjoy special properties that are not shared by general modules. In particular,
it will transpire that every (finitely generated) module over a field is free.

For a general unital ring R, Definition 9.39(b) introduced the concept of
linear independence for an l-element subset X = {x1, . . . , xl} of an R-module
A. The stipulation that X has l elements means that there are no repeats in
the sequence x1, x2, . . . , xl. For the opposite concept of linear dependence, we
do need to admit the possibility of repeats.

DEFINITION 9.45 (Linear dependence.) Let A be a module over
a unital ring R. Consider a sequence x1, x2, . . . , xk of elements of A. The
sequence is said to be linearly dependent if there is an expression

0 = r1x1 + . . . + rkxk

of 0 as an R-linear combination of the elements of the sequence, with at least
one of the coefficients r1, . . . , rk in R being nonzero.

Suppose that A is a module over a nontrivial unital ring R. Let x1, . . . , xk

be a sequence of elements of A. There are three trivial ways for the sequence
to be linearly dependent:

• If xi = 0 for some 1 ≤ i ≤ k, then the sequence is linearly dependent by
virtue of the expression 0 = 1 · xi;

• If the sequence contains a linearly dependent subsequence xi1 , . . . , xil
,

say
0 = ri1xi1 + . . . + ril

xil

with some rij
6= 0, then the same expression serves to show that the

original sequence x1, . . . , xk is linearly dependent;

• If the sequence has a repeat, say xi = xj for 1 ≤ i < j ≤ k, then it is
linearly dependent by virtue of the expression 0 = 1 · xi + (−1) · xj .
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A sequence x1, . . . , xl is linearly independent if it is not linearly dependent.
Since there are then exactly l elements in the sequence, repeats being excluded,
we recover the concept of linear independence of the set {x1, . . . , xl} from
Definition 9.39(b).

The following result gives an indication of the special properties that hold
for modules (vector spaces) over fields.

PROPOSITION 9.46 (Linear dependence and linear combinations.)
Let A be a vector space over a field F . Let x1, . . . , xk be a sequence of

nonzero elements of A. Then the following conditions are equivalent:

(a) The sequence x1, . . . , xk is linearly dependent;

(b) An element xj of the sequence, with j > 1, is a linear combination of
the earlier members x1, . . . , xj−1 of the sequence.

PROOF (a) implies (b): Since x1, . . . , xk is linearly dependent, there
is a relation

0 = r1x1 + . . . + rj−1xj−1 + rjxj

with rj 6= 0. Then

xj = −r−1
j r1x1 − . . .− r−1

j rj−1xj−1

expresses xj as a linear combination of the earlier members of the sequence.
(b) implies (a): Suppose that

xj = r1x1 + . . . + rj−1xj−1 .

Then
0 = r1x1 + . . . + rj−1xj−1 + (−1)xj

expresses 0 as a linear combination involving the nonzero coefficient −1.

Example 9.47 (Linear dependence without a linear combination.)
In the Z-module Z/4 of integers modulo 4, take x1 = 2 and x2 = 1. Then the
sequence x1, x2 is linearly dependent, since 0 = 1 · x1 + 2 · x2. Nevertheless,
the element x2 is not a linear combination (multiple) of x1.

For the remainder of this section, we will consider modules (vector spaces)
over a field F . The following theorem uses Proposition 9.46 to show that every
finitely generated vector space is free. The name comes from the way that a
generating set may be pruned down to a linearly independent generating set,
a basis.
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THEOREM 9.48 (Pruning Theorem.)
Let V be a finitely generated vector space over a field F . Suppose that Y =
{y1, . . . , ym} is a set of nonzero vectors in V that generates V . Then Y has
a linearly independent subset {yi1 , . . . , yil

} which forms a basis of V .

PROOF Suppose that X = {x1, . . . , xk} is a k-element subset of Y which
still generates V . If this subset X is already linearly independent, it forms
the required basis. Otherwise, x1, . . . , xk is a linearly dependent sequence
of nonzero vectors. According to Proposition 9.46, there is some vector xj

in the sequence, with j > 1, that is linearly dependent on its predecessors.
Then X ′ = {x1, . . . , xj−1, xj+1, . . . , xk} is a (k−1)-element subset of Y which
still generates V . The pruning process, passing from a generating set X to
a smaller generating set X ′, may be continued until a linearly independent
generating subset is obtained.

Example 9.49 (Eighth roots of unity.)
Consider the set Y = {ωr | 1 ≤ r < 8} of 8-th roots of unity, the complex

roots of the polynomial X8 − 1 in Q[X] — Example 8.24, page 198 — with

ω = cos
(π

4

)
+ i sin

(π

4

)
=

1√
2

+
i√
2

.

These roots are displayed in Figure 9.2.
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FIGURE 9.2: Eighth roots of unity.
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The field Q(ω) is the splitting field for X8 − 1 over Q. Using the notation
of Example 9.20, the extension field Q(ω) of Q forms a module or vector
space QQ(ω) over Q. The set Y spans the Q-vector space Q(ω). (In fact,
Q(ω) may also be characterized as the subspace of QC generated by Y .) By
Theorem 9.48, Y may be pruned down to a basis for Q(ω) over Q. Starting
with the sequence

1, ω, ω2, ω3, ω4, ω5, ω6, ω7,

the elements ω7 = −ω3, ω6 = −ω2, ω5 = −ω, ω4 = −1 are pruned in turn.
This leaves the linearly independent set {1, ω, ω2, ω3} as a basis for the vector
space Q(ω) over Q.

THEOREM 9.50 (Exchange Theorem.)
Let V be a vector space over a field F , and let l be a positive integer. Suppose:

(a) X = {x1, . . . , xk} is an l-element basis of V , and

(b) Y = {y1, . . . , ym} is an l-element, linearly independent subset of V .

Then V is generated by Y .

PROOF For each 0 ≤ k ≤ l, we will prove that there is an injective
function f : {k + 1, . . . , l} → {1, . . . , l} such that the set

{y1, . . . , yk, xf(k+1), . . . , xf(l)} (9.23)

generates V . The claim is true for k = 0, with f as the identity function on
the set {1, . . . , l}. Suppose

{y1, . . . , yk−1, xg(k), . . . , xg(l)}
generates V , with an injective function

g : {k, . . . , l} → {1, . . . , l} .

Then the vector yk of V may be written as a linear combination

yk = r1y1 + . . . + rk−1yk−1 + rkxg(k) + . . . + rlxg(l) . (9.24)

Now rk = · · · = rl = 0 would contradict the linear independence of Y , so
there is an integer k ≤ m ≤ l with rm 6= 0. Rewriting (9.24) as

yk = r1y1 + . . . + rk−1yk−1 + rkxg(k) + . . . + rmxg(m) + . . . + rlxg(l) ,

we see that xg(m) is expressed as the linear combination

− r−1
m r1y1 − . . .− r−1

m rk−1yk−1 + r−1
m yk

− r−1
m rkxg(k) − . . .− r−1

m rm−1xg(m−1) − r−1
m rm+1xg(m+1) − . . .− r−1

m rlxg(l) .
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Since the set {y1, . . . , yk−1, xg(k), . . . , xg(l)} generates V , it is apparent that
the set {y1, . . . , yk, xg(k+1), . . . , xg(m−1), xg(m+1), . . . , xg(l)} also generates V .
Define an injective function h : {k + 1, . . . , l} → {1, . . . , l} by

h(i) =

{
g(i− 1) if i ≤ m ;
g(i) if i > m .

Then {y1, . . . , yk, xh(k+1), . . . , xh(l)} generates V , as required to complete the
inductive proof. The statement of the theorem follows, since Y is just the
case k = l of (9.23), with f : ∅ ↪→ {1, . . . , l}.

COROLLARY 9.51

Let V be a finitely generated vector space over a field F . Then any two bases
of V have the same number of elements.

PROOF Suppose that X = {x1, . . . , xl} and Y ′ = {y1, . . . , yn} are bases
of V over F , with l and n elements respectively. If l 6= n, say l < n, then
Theorem 9.50 shows that the linearly independent subset Y = {y1, . . . , yl} of
Y ′ already generates V . The expression of the nonzero vector yl+1 as a linear
combination of y1, . . . , yl would then violate the linear independence of Y ′.

DEFINITION 9.52 (Dimension of a vector space.) Let V be a finitely
generated vector space over a field F . Then the dimension dimF V of V over
F is the number of elements in a basis of V over F .

Example 9.53

In Example 9.49, dimQQ(ω) = 4.

Example 9.54

For a field F and positive integer n, the vector space Fn has n elements in
its standard basis En (Example 9.40). Thus dimF Fn = n.

Since finitely generated modules over a field F have finite dimension, they
are usually known as finite-dimensional vector spaces. If a vector space is not
finite-dimensional, it is described as being infinite-dimensional . For the proof
of the following, see Exercise 34.

PROPOSITION 9.55

Let V and W be finite-dimensional vector spaces over a field F . Then V and
W are isomorphic if and only if they have the same dimension.
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9.8 Abelian groups

This section analyzes the structure of finitely generated abelian groups.
Each such group is an internal direct sum of certain cyclic subgroups, given
in terms of an ascending chain of ideals of Z — compare (8.3), page 188.

THEOREM 9.56 (Structure of finitely generated abelian groups.)
Let A be a finitely generated, nontrivial abelian group. Then there is a finite
ascending chain

J1 ↪→ J2 ↪→ . . . ↪→ Jl−1 ↪→ Jl (9.25)

of proper ideals of Z such that A is isomorphic to the direct sum

Z/J1 ⊕ Z/J2 ⊕ . . .⊕ Z/Jl−1 ⊕ Z/Jl (9.26)

of nontrivial cyclic groups.

PROOF Consider the set

S1 = {|X| < ∞ | ZX = A}
of sizes of the finite subsets X of A that generate A. Since A is finitely
generated, the set S1 of positive integers is nonempty. By the Well-Ordering
Principle, the set S1 has a least element l. This integer l will become the
number of ideals in the chain (9.25). The proof proceeds by induction on l.
If l = 1, the group A is cyclic, and the theorem is immediate. Thus for the
inductive proof, we proceed to the case l > 1, and assume that the theorem
is true for all abelian groups generated by fewer than l elements.

Suppose that some generating set X = {x1, . . . , xl} of minimal size l is
linearly independent, so that A is free. Proposition 9.41 then gives

A ∼= Z/J1 ⊕ Z/J2 ⊕ . . .⊕ Z/Jl

with J1 = · · · = Jl = {0}, and the theorem is proved directly.
In the remaining cases, each generating set X = {x1, . . . , xl} of minimal

size l satisfies a relation

0 = r1x1 + . . . + rlxl (9.27)

with at least one nonzero coefficient integer ri. Multiplying (9.27) by −1 if
necessary, we may assume that there is a strictly positive coefficient. Let S2 be
the nonempty set of all such positive coefficients, taken over all the generating
sets of minimal size l. By the Well-Ordering Principle, the set S2 has a least
element. This least element appears as the coefficient rl in the relation (9.27)
on a generating set X = {x1, . . . , xl}.
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For 1 ≤ i < l, the Division Algorithm with divisor rl gives ri = qirl + r′i
with remainder 0 ≤ r′i < rl. Rewriting the relation (9.27) as

0 = r1x1 + . . . + ri−1xi−1 + rixi + ri+1xi+1 + . . . + rlxl

= r1x1 + . . . + ri−1xi−1 + (qirl + r′i)xi + ri+1xi+1 + . . . + rlxl

= r1x1 + . . . + ri−1xi−1 + r′ixi + ri+1xi+1 + . . . + rl(xl + qixi)

gives r′i as a coefficient in a relation on the generating set

{x1, . . . , xi, . . . , xl−1, xl + qixi}

— note that xl = (−qi)xi +(xl +qixi). By the choice of rl as the least positive
coefficient, we must have r′i = 0, so that ri = qirl.

Now consider the minimal generating set X ′ = {x1, . . . , xl−1, yl} with

yl = q1x1 + . . . + ql−1xl−1 + xl .

The relation (9.27) is rewritten as

0 = r1x1 . . . + rl−1xl−1 + rlxl

= q1rlx1 + . . . + ql−1rlxl−1 + rlxl

= rl(q1x1 + . . . + ql−1xl−1 + xl) = rlyl ,

so the element yl has order rl in A. Setting Jl = rlZ, we have Z/Jl
∼= Z{yl}.

Let B be the subgroup of A generated by {x1, . . . , xl−1}. Note that A =
B + Z{yl}. Suppose that

0 = b + slyl (9.28)

with b = s1x1 + . . . + sl−1xl−1 in B and slyl in Z{yl}. Use the Division
Algorithm to write sl = prl + r with 0 ≤ r < rl. Recalling that rlyl = 0, the
relation (9.28) takes the form

0 = b + slyl = (s1x1 + . . . + sl−1xl−1) + ryl .

By the choice of rl as the least element of the set S2 of positive coefficients,
it follows that r = 0, so b = 0 = slyl in (9.28). By Proposition 9.38(c), the
group A is the internal direct sum of B and Z{yl}.

Since B is generated by l − 1 elements, the induction hypothesis yields an
ascending chain

J1 ↪→ J2 ↪→ . . . ↪→ Jl−1 (9.29)

of ideals of Z such that B is isomorphic to the direct sum

Z/J1 ⊕ Z/J2 ⊕ . . .⊕ Z/Jl−1

of nontrivial cyclic groups. It follows that A, as the internal direct sum of B
and Z{yl}, is isomorphic to the direct sum (9.26).



242 Introduction to Abstract Algebra

By Corollary 9.35, there is a generating set {y1, . . . , yl−1} of B such that
Z/Ji

∼= Z{yi} for 1 ≤ i ≤ l − 1. If B is free, then Jl−1 = {0}, so the chain
(9.29) extends to (9.25). If B is not free, then Jl−1 = sZ with 0 < s = qrl + r′

and 0 ≤ r′ < r1. Consider the generating set Y = {y1, . . . , yl−1, qyl−1 + yl}
for A — note yl = (−q)yl−1 + (qyl−1 + yl). Since 0 = syl−1 = rlyl, we have

0 = (qrl + r′)yl−1 + rlyl = r′yl−1 + rl(qyl−1 + yl)

as a relation on the minimal generating set Y of A. By the choice of rl as the
least element of the set S2 of positive coefficients, it follows that r′ = 0. Thus
s = qrl lies in Jl, and the chain (9.29) extends to (9.25) in this case as well.

Example 9.57
Consider the abelian group A = C3×C4×C5×C6. By the Chinese Remainder
Theorem (Theorem 5.24, page 105), C3 × C4 × C5

∼= C60, so A ∼= C60 × C6.
Theorem 9.56 gives A ∼= Z/J1 ⊕ Z/J2 with J1 = 60Z and J2 = 6Z.

Example 9.58
Consider the subgroup

N = {(0, 10x, 2x) | x in Z}

of Z3. Let A be the quotient group Z3/N . For the standard basis E3 =
{e1, e2, e3} of Z3, consider the cosets xi = ei + N in A for 1 ≤ i ≤ 3. The
generating set X = {x1, x2, x3} of A is minimal, and satisfies the relation

10x2 + 2x3 = (0, 10, 2) + N = N = 0 . (9.30)

Using the notation from the proof of Theorem 9.56, the least element of the set
S2 of positive coefficients is r3 = 2, the coefficient of x3 in the relation (9.30).
If B is the subgroup of A generated by {x1, x2}, we have A ∼= B⊕Z{y3} with
y3 = 5x2 + x3 and Z{y3} ∼= Z/2. In turn, B ∼= Z⊕ Z (Exercise 36). Thus the
chain of ideals in the description of A provided by Theorem 9.56 is J1 = {0},
J2 = {0}, and J3 = 2Z.

Example 9.59
Consider the subgroup

N = {(0, 10x, 2y) | x , y in Z}

of Z3. Let A be the quotient group Z3/N . Then the chain of ideals in the
description of A provided by Theorem 9.56 is J1 = {0}, J2 = 10Z, and J3 = 2Z
(Exercise 37).
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9.9 Exercises

1. Determine all the endomorphisms of the group (Z/3, +, 0) of integers
modulo 3 under addition.

2. Let A and B be abelian groups. Show that the maps

ρ : A×B → A×B; (a, b) 7→ (a, 0)

and
σ : A×B → A×B; (a, b) 7→ (0, b)

are endomorphisms of A×B.

3. Let A be an abelian group. Show that the map

τ : A×A → A×A; (a, b) 7→ (b, a)

is an endomorphism of A×A.

4. Determine all the injective endomorphisms of the Klein 4-group.

5. Let r be an element of a ring R. Which ring property in Definition 6.1
(page 127) ensures that (9.4) is an endomorphism of the additive group
(R,+, 0)?

6. Let (G, ·, e) be a group. Consider the group Z of integers. For two
homomorphisms θ : Z → G and ϕ : Z → G, define the componentwise
product

θ · ϕ : Z→ G;n 7→ θ(n)ϕ(n) .

Show that G is abelian if and only if the following condition is satisfied:

For all homomorphisms θ : Z → G and ϕ : Z → G, the
componentwise product θ · ϕ : Z→ G is a homomorphism.

7. Let A be an abelian group of order 2.

(a) Show that there are just 2 endomorphisms of A, the zero map 0 of
(9.1) and the identity map 1 of (9.2).

(b) Show that 1 + 1 = 0 in the endomorphism ring End(A).

(c) Conclude that the ring End(A) is isomorphic to the ring (Z/2, +, ·)
of integers modulo 2.

8. In Example 9.16, verify that the map

F → End (F 1
2 , +);λ 7→ σλ

is a unital ring homomorphism.
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9. In Example 9.17, verify that the map

C→ End (C1
2,+); λ 7→ δλ

is a unital ring homomorphism.

10. Let A be an abelian group. Suppose that A forms a Z-module (A, +, σ)
with structure map σ : Z→ EndA. Prove that σn(a) is the multiple na
for each integer n and element a of A.

11. Let A be an abelian group, interpreted as a Z-module according to
Example 9.18. Show that a subset B of A is a subgroup of A if and only
if it is a submodule of A.

12. For a field F , consider the module F 1
2 of 2-dimensional column vectors

given by the scalar action of Example 9.16. For each 2-dimensional row
vector [f1 f2] over F , show that the solution set

B =
{[

x1

x2

] ∣∣∣∣ [f1 f2]
[
x1

x2

]
= 0

}

of the homogeneous linear equation

f1x1 + f2x2 = 0

is a submodule of F 1
2 .

13. Continue the notation of Exercise 12. Let k be a nonzero element of the
field F . Under what conditions is the solution set of the inhomogeneous
linear equation

f1x1 + f2x2 = k

a submodule of F 1
2 ?

14. Let (R, +, ·) be a ring. A subset J of R is said to be a left ideal of R if
it is a subgroup of (R, +, 0) satisfying the left absorptive property

j in J implies r · j in J

for each r in R. Take R to be a left R-module, as in Example 9.20 with
A = R. Show that a subset B of R is a submodule of R if and only if it
is a left ideal of R.

15. Let R be the ring R2
2 of 2 × 2 real matrices, under the usual addition

and multiplication of matrices. Consider the subset

J =
{ [

0 x
0 y

] ∣∣∣∣ x , y in R
}

of R.
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(a) Show that J is a left ideal of R.

(b) Show that J is not an ideal of R.

16. Suppose that X is a subset of a submodule B of a module A over a ring
R. Write out a formal proof, by induction on the natural number n,
that each R-linear combination

r1 · x1 + . . . + rn · xn

of elements x1,. . . , xn of X, with coefficients r1, . . . , rn from R, lies in
the submodule B.

17. Consider the abelian group Z of integers as a unital Z-module. Show
that

Z{a, b} = gcd(a, b)Z

for nonzero integers a and b.

18. Give a direct proof of Corollary 9.27 (without using Theorem 9.26).

19. Let R be a nontrivial ring. Consider the polynomial ring A over R in an
indeterminate Y as an R-module (A,+, R), according to Example 9.28.
Let

X = {p1(Y ), . . . , pr(Y )}
be a finite subset of A.

(a) Let M be the maximum of the degrees deg p!, . . . , deg pr of the
polynomials in the set X. Consider the submodule RX of A that
is generated by X. Show that no polynomial p(X) in RX has a
degree deg p which exceeds M .

(b) Conclude that the R-module A is not finitely generated.

20. Show that the image of a module homomorphism is a submodule of its
codomain.

21. Let (A, +,Z) and (B, +,Z) be Z-modules. Show that a given function
f : A → B is a Z-module homomorphism if and only if it is an abelian
group homomorphism.

22. Verify the claim of Example 9.33.

23. Verify the claim of Example 9.37.

24. Let A and B be abelian groups. Define group homomorphisms

α : A → A⊕B; a 7→ (a, 0)

and
β : B → A⊕B; b 7→ (0, b) .
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Let C be a third abelian group, the codomain of group homomorphisms
f : A → C and g : B → C. Show that there is a uniquely defined group
homomorphism h : A⊕B → C with h ◦ α = f and h ◦ β = g.

25. Define group homomorphisms

α : Z→ Z× Z; n 7→ (n, 0)

and
β : Z→ Z× Z; n 7→ (0, n) .

For the symmetric group S3 = {0, 1, 2}!, define group homomorphisms

f : Z→ S3; n 7→ (0 1)n

and
g : Z→ S3; n 7→ (1 2)n .

Show that there is no group homomorphism h : Z × Z → S3 with
h ◦ α = f and h ◦ β = g. (Hint: In Z× Z, the equation

(1, 0) + (0, 1) = (1, 1) = (0, 1) + (1, 0)

holds, while
(0 1) ◦ (1 2) 6= (1 2) ◦ (0 1)

in S3.)

26. For a positive integer n, let B1, . . . , Bn be submodules of a module B.
Verify that the set of all elements b of B that have an expression of the
form

b = b1 + b2 + . . . + bn

(with bi in Bi for 1 ≤ i ≤ n) is the submodule of B generated by the
union of the subsets B1, . . . , Bn of B.

27. Let X = {x1, . . . , xl} be a basis for a free module A over a unital ring
R. For 1 ≤ i ≤ l, define

yi = x1 + . . . + xi .

Show that Y = {y1, . . . , yl} is a basis for A.

28. Let R be a nontrivial unital ring. Let l and m be integers. Show that
the two R-modules Rl ⊕Rm and Rl+m are isomorphic.

29. Verify that the map (9.22) is a ring homomorphism.

30. Let n be a positive integer. Show that the abelian group Cn × Cn has
n4 endomorphisms.
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31. In the Z-module Z/6 of integers modulo 6, take x1 = 2 and x2 = 3.

(a) Show that the sequence x1, x2 is linearly dependent.

(b) Show that neither of the elements x1, x2 is a linear combination of
the other.

32. Consider
ω = cos

(π

3

)
+ i sin

(π

3

)

as a sixth root of unity. Find a basis for the vector space Q(ω) over Q.

33. Consider

ω = cos
(

2π
5

)
+ i sin

(
2π

5

)

as a fifth root of unity. Find a basis for the vector space Q(ω) over Q.

34. Prove Proposition 9.55: Let F be a field.

(a) Let V be a finite-dimensional vector space over F . If dimF V = l,
let X = {x1, . . . , xl} be a basis for V . Define

f : X → El; xi 7→ ei

and
g : El → X; ei 7→ xi .

Use the universality of free modules (Theorem 9.42) to build the
respective extensions f : V → Fn and g : Fn → V . Show that f
and g are mutually inverse vector space isomorphisms. (Hint: The
unique homomorphic extension idX of idX is idV .)

(b) Let l and m be positive integers. If h : F l → Fm is a vector space
isomorphism, show that h(El) is a basis of Fm. Use Corollary 9.51
to conclude that l = m.

35. Let A be the abelian group C2 × C3 × C4 × C6. Determine the chain
(9.25) of ideals in the description of A provided by Theorem 9.56.

36. In Example 9.58, show that each element (a1, a
′
2, a3) + N of A has an

expression of the form

(a1, a
′
2, a3) + N = (a1, a2, 0) + (0, 5a3, a3) + N

= a1x1 + a2x2 + a3y3

with integers a1 and a2. Conclude that the subgroup B is isomorphic
to Z⊕ Z.

37. In Example 9.59, show that the group A is isomorphic to Z⊕Z/10⊕Z/2.
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38. Consider the subgroup

N = {(0, 2x, 2y) | x , y in Z}

of Z3. Let A be the quotient group Z3/N . Find the chain (9.25) of
ideals in the description of A provided by Theorem 9.56.

39. (a) Show that the sets Z and Z2 are isomorphic.

(b) Show that the groups Z and Z2 are not isomorphic.

9.10 Study projects

1. Partitions and p-groups. A partition (or more explicitly, an integer
partition) is an expression of a positive integer n as a sum

n = n1 + n2 + . . . + nl (9.31)

of positive integers. The integers ni are known as the parts or summands
of the partition. Conventionally, the summands may be arranged in
decreasing order:

n1 ≥ n2 ≥ · · · ≥ nl . (9.32)

The number l of summands is known as the length of the partition. The
integer n is known as the sum of the partition.

FIGURE 9.3: The partition 4 + 4 + 3 + 1 + 1.

It is sometimes helpful to visualize a partition (9.31) as a series of l
columns, of respective depths given by the parts of the partition, as
illustrated in Figure 9.3.
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For a prime number p, a finite group is said to be a p-group if its order is
a power pn of the prime number p. Here, we are concerned with abelian
p-groups. Each partition (9.31) determines the p-group

Z/pn1Z⊕ Z/pn2Z⊕ · · · ⊕ Z/pnlZ .

The Structure Theorem 9.56 for abelian groups then yields the ascending
sequence

pn1Z ↪→ pn2Z ↪→ . . . ↪→ pnlZ
of ideals of Z corresponding to the decreasing sequence (9.32) of parts
of the partition. A group A is said to be an elementary abelian group if
it is isomorphic to a finite power Cl

p of a cyclic group of prime order p.

(a) Show that the underlying group of a finite-dimensional vector space
over the field Z/p is an elementary abelian p-group.

(b) Show that every elementary abelian p-group A of order pl is the
underlying group of an l-dimensional vector space over Z/p.

(c) Show that an elementary abelian p-group of order pl has pl − 1
elements of order p.

(d) Show that an abelian group of order pl is elementary abelian if it
has pl − 1 elements of order p.

(e) Show that an elementary abelian p-group of order pl corresponds
to the partition l = 1 + 1 + . . . + 1.

(f) Let A be an abelian p-group of order pn. Using the notation of
(9.3), consider the endomorphism µp : A → A; a 7→ pa of A. Show
that A corresponds to a partition of n with length l if and only if
the subgroup

Ker µp = {a | pa = 0}
is an elementary abelian p-group of order pl.

(g) Use induction on n to show that two p-groups A and B of order pn

are isomorphic if and only if they correspond to the same partition
(9.31) of n :
(i). If A and B are elementary abelian, show that the claim results

directly from (f).
(ii). Otherwise, consider the subgroup

pA = {pa | a in A}
of A. If A corresponds to (9.32) with

n1 ≥ · · · ≥ nm > nm+1 = · · · = nl = 1 ,

show that pA corresponds to the partition

(n1 − 1) + . . . + (nm − 1)

of n− l.
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(h) Determine all the integer partitions of 5.
(i) Determine representatives for each of the isomorphism classes of

abelian groups of order 32.
(j) Determine the isomorphism class of the group of units (Z/51, ·, 1)∗

of the monoid of integers modulo 51 under multiplication.
(k) Do the monoids Z/51 and Z/15 × Z/5 have isomorphic groups of

units?

2. Algebraic and transcendental numbers. A complex number x is
said to be algebraic if the field extension Q(x) is a finite-dimensional
vector space over Q. Otherwise, x is described as transcendental . For
example, it is known that the real numbers e and π are transcendental.

(a) Show that
√

5 is algebraic.
(b) Show that x is algebraic if and only if it is the root of a certain

polynomial p(X) in Q[X].
(c) Show that

√
3 +

√
5 is algebraic.

(d) Consider successive field extensions F ↪→ K ↪→ L. Suppose that K
is a finite-dimensional vector space over F , with basis {k1, . . . , km}.
Suppose that L is a finite-dimensional vector space over K, with
basis {l1, . . . , ln}. Show that L is a finite-dimensional vector space
over F , with basis

{kilj | 1 ≤ i ≤ m, 1 ≤ j ≤ n} .

(e) Show that the set of algebraic numbers forms a subfield A of C.
[Hint: If the dimensions dimQQ(x) and dimQQ(y) are finite, show
that dimQ(x)Q(x, y) and dimQQ(x, y) are finite.]

3. Algebraically closed fields. A field F is said to be algebraically closed
if it satisfies one of the following conditions:

(a) Each nonconstant polynomial f(X) in F [X] has a root in F ;
(b) Each nonconstant polynomial f(X) in F [X] splits over F ;
(c) If E is an extension of F for which dimF E is finite, then E = F .

Show that these conditions are equivalent.
Now, if you know a little complex analysis, recall Liouville’s Theorem:

If a function g : C→ C can be expanded as a power series
∞∑

n=0

an(z − z0)n

about each point z0 of C, and there is a real number M such
that |g(z)| < M for all complex numbers z, then g : C→ C is
a constant function.



MODULES 251

Use Liouville’s Theorem to derive the so-called Fundamental Theorem
of Algebra: The field C is algebraically closed. [Hint: If f(z) 6= 0 for all
complex numbers z, apply Liouville’s Theorem to g(z) = 1/f(z).]

9.11 Notes

Section 9.6

For certain noncommutative rings R, there may be an isomorphism

Rl ∼= Rm

with l 6= m.

Section 9.7

The fundamental Corollary 9.51 may also be proved using a result from
the elementary theory of linear equations, that a homogeneous system of l
given equations in n unknowns has a nonzero solution if l < n. Traces of
that method may be observed in the proof of Theorem 9.50, for example the
selection of xg(m) as a “pivot” element in (9.24).

Section 9.10

J. Liouville was a French mathematician who lived from 1809 to 1882.
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Chapter 10

GROUP ACTIONS

The importance of groups stems from the general way that they capture the
concept of symmetry, as described in this chapter. In particular, each group
contains various internal symmetries that constrain the structure of the group.

10.1 Actions

For a set X, recall that the set of all bijective maps from X to X forms
a group X! of permutations under composition, the symmetric group on X
(compare Section 2.7, and Exercise 13 in Chapter 4). For a group G, Cayley’s
Theorem (page 110) shows that there is an injective group homomorphism

Λ : G → G!; g 7→ λg (10.1)

from G to G!. In order to study general symmetry, we replace the group G!
in (10.1) by the group X! of permutations of a general set X.

DEFINITION 10.1 (Group action, permutation representation.)
Let X be a set, and let G be a group. Then the group G is said to have a
(left) (group) action (X, G, λ) on the set X, or to act on the set X, if there
is a homomorphism

λ : G → X!; g 7→ λg (10.2)

from G to X!. The homomorphism λ appearing in (10.2), or the full structure
(X, G, λ), is said to be a permutation representation of the group G.

Example 10.2 (Regular action.)
As a permutation representation of a group (G, ·, e), the homomorphism

(10.1) from Cayley’s Theorem, with λg(x) = g · x for g and x in G, is called
the (left) regular permutation representation.

Example 10.3 (Natural action of a symmetric group.)
For each set X, the identity map idX! : X! → X! gives the natural action

(X, X!, idX!) of the symmetric group X! on X.

253
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Example 10.4 (Matrix action.)
Left multiplication (2.6) by invertible real 2× 2 matrices gives an action

L : GL(2,R) → (R1
2)!;A 7→ LA

of the real general linear group GL(2,R) on the set R1
2 of 2-dimensional real

column vectors. In this example, it is possible to replace the field R of real
numbers by any other field F , giving an action

L : GL(2, F ) → (F 1
2 )!; A 7→ LA (10.3)

of the general linear group GL(2, F ) of invertible 2×2 matrices over F on the
set F 1

2 of 2-dimensional column vectors over F .

A group G is defined by the multiplication, identity, and inversion. Given
a set X, and maps λg : X → X for each element g of G, the group properties
may be used directly to confirm the presence of an action.

PROPOSITION 10.5 (Conditions for a group action.)
Let X be a set and let (G, ·, e) be a group. Suppose that a map λg : X → X

is defined for each element g of G. Then there is a group action (10.2) of G
on X if and only if

(a) λe(x) = x and

(b) λg·h(x) = λg

(
λh(x)

)

for x in X and g, h in G.

PROOF First, suppose that there is an action (10.2). Since λ : G → X!
is a group homomorphism, λe is the identity element idX of X!, so that (a)
holds. Again, for elements g and h of G, we have λg·h = λg ◦ λh, so that (b)
holds.

Conversely, suppose that (a) and (b) hold. In particular, (a) shows that
λe = idX . Then for each element g of G, condition (b) gives

λg ◦ λg−1 = λg·g−1 = λe = idX

and
λg−1 ◦ λg = λg−1·g = λe = idX ,

so that λg is invertible. In particular, there is a map

λ : G → X!; g 7→ λg . (10.4)

Condition (b), in the form λg·h = λg ◦ λh, shows that the map λ of (10.4) is
a semigroup homomorphism. By Proposition 5.5 (page 96), it follows that λ
is a group homomorphism, so that (10.4) becomes an instance of (10.2).
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COROLLARY 10.6
Let x be an element of a set X with a group action (X, G, λ). Define

Gx = {g in G | λg(x) = x} . (10.5)

Then Gx is a subgroup of G.

PROOF By Proposition 10.5(a), the identity element e of G lies in Gx.
By Proposition 10.5(b), the set Gx is closed under multiplication. Finally, if
g lies in Gx, then

λg−1(x) = λg−1

(
λg(x)

)
= λe(x) = x

by Proposition 10.5(b), so that Gx is closed under inversion.

DEFINITION 10.7 (Stabilizers.) Suppose (X, G, λ) is a permutation
representation. Let x be an element of the set X. Then the group Gx of (10.5)
is called the stabilizer Stabλ(x) of x in G.

The notation Gx of (10.5) makes no specific mention of the representation
λ. Should reference to λ be required, the notation Stabλ(x) of Definition 10.7
may be used.

Example 10.8 (Trivial representations.)
Let X be a set, and let G be a group. For x in X and g in G, define εg(x) = x.
The conditions (a) and (b) of Proposition 10.5 are trivially satisfied. The
representation (X,G, ε) is called the trivial representation of G on X. The
whole group G is the stabilizer of each element of X.

Example 10.9 (Inner automorphisms.)
Let (G, ·, e) be a group. For g in G, define

τg : G → G;x 7→ g · x · g−1 . (10.6)

Note that
τe(x) = x

and

τg·h(x) = (g · h) · x · (g · h)−1 = g · h · x · h−1 · g−1 = τg

(
τh(x)

)

for g, h and x in G. Thus by Proposition 10.5,

τ : G → G!; g 7→ τg (10.7)
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is an action of the group G on the set G, the conjugation action. In particular,
each map τg : G → G is bijective. Moreover,

τg(x · y) = g · x · y · g−1 = g · x · g−1 · g · y · g−1 = τg(x) · τg(y)

for x and y in G, so that τg : G → G is a group homomorphism. The maps
τg are known as inner automorphisms of the group G.

DEFINITION 10.10 (Center, conjugation.) Let G be a group.

(a) The kernel of the group homomorphism (10.7) is the center Z or Z(G)
of the group G.

(b) The image τ(G) of the group homomorphism (10.7) is known as the
inner automorphism group Inn(G) of the group G.

(c) For a specific element g of the group G, the map

τg : G → G; x 7→ g · x · g−1

is known as conjugation by g.

(d) For a specific element x of the set G, the stabilizer

CG(x) = {g in G | τg(x) = x}
of x in the conjugation action is known as the centralizer of x in G.

10.2 Orbits

Let (X,G, λ) be an action of a group G on a set X. For an element x of
X, the orbit of x is the set

λG(x) = {λg(x) | g in G}
of images of x under the actions λg of the elements g of G.

Example 10.11 (Plane rotations.)
For each real number θ, define a map

κθ : R1
2 → R1

2;
[
x1

x2

]
7→

[
cos θ − sin θ
sin θ cos θ

] [
x1

x2

]
.

Note that for an angle θ (in radians), the map κθ : R1
2 → R1

2 rotates the plane
R1

2 counterclockwise by θ about the origin O. Now (R1
2,R, κ) is an action of
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the additive group (R, +, 0) of real numbers (Exercise 15). Then for a point
P in the plane R1

2, the orbit κR(P ) is the circle around the origin through the
point P (Figure 10.1). If the Sun is located at the origin O, and P represents
a planet, then the mathematical orbit κR(P ) of P represents the astronomical
orbit of the planet around the sun.

-

6

w
P =

[
x1

x2

]

x1

x2

O

w

R1
2

κR(P )
Á

FIGURE 10.1: The orbit κR(P ) of a point P in the plane R1
2.

A group action may be trimmed down to a smaller action in two ways: by
passing to a subgroup of the group, or by discarding some of the orbits.

DEFINITION 10.12 Let (X, G, λ) be an action of a group G on a set X.

(a) For a subgroup H of G, the action (X,H, λ) given by the restriction

λ : H → X!;h 7→ λh

to the subgroup H of the group homomorphism

λ : G → X!; g 7→ λg

is called the restriction of the action (X, G, λ) to the subgroup H.

(b) Let Y be a union of orbits in the action (X,G, λ). Then the action
(Y, G, λ) given by

λg : Y → Y ; y 7→ λg(y)

for each g in G is called the restriction of the action (X,G, λ) to the
subset Y of X.
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Example 10.13 (Right cosets.)
Let H be a subgroup of a group G. Consider the restriction (G, H, λ) to H of
the left regular representation of G (compare Example 10.2). Then for each
element x of G, the orbit λH(x) is the right coset Hx. Now if K is a subgroup
of G that contains H, the action (G,H, λ) may be restricted to (K,H, λ).

For a subgroup H of a group G, the right cosets Hx of H in G are the
classes of an equivalence relation on G (recall Proposition 4.49, page 83). The
following proposition states that the orbits of a general group action (X, G, λ)
are the classes of an equivalence relation. The proof, analogous to the proof
of Proposition 4.49 (page 83), is relegated to Exercise 16.

PROPOSITION 10.14 (Orbits as equivalence classes.)
Let (X, G, λ) be a permutation representation of a group G on a set X. Define
a relation λG−→ on X by

x
λG−→ y if and only if y = λg(x) for some g in G .

(a) The relation λG−→ is an equivalence relation on X.

(b) For x in X, the equivalence class of x is the orbit λG(x) of x.

Example 10.15 (Conjugacy.)
Let x be an element of a group G. Then the orbit τG(x) in the conjugacy

action (G, G, τ) of G is the conjugacy class

{g · x · g−1 | g in G}

of x in G. The equivalence relation τG−→ on G given by Proposition 10.14 is
known as conjugacy . In the group GL(2, F ), the conjugacy relation is known
as matrix similarity .

10.3 Transitive actions

Consider a permutation representation (X, G, λ) of a group G on a set X.
According to Proposition 10.14, the set X is partitioned by the orbits. The
representation is said to be transitive if there is just one orbit. Equivalently,
the action (X, G, λ) is transitive if X is nonempty, and for each pair of elements
x, y of X, there is at least one element g of G with y = λg(x).
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Example 10.16 (Regular action.)
For a group G, the regular representation is transitive. See Corollary 4.54

(page 86) and Exercise 42 in Chapter 4.

Example 10.17 (Matrix action.)
Let F be a field. Consider the left multiplication action (10.3) of GL(2, F )

on F 2
1 . This action is never transitive, since the zero column vector is always

alone in its orbit. However, there is only one other orbit (Exercise 17).

Example 10.18 (Restriction to an orbit.)
Let (X, G, λ) be a permutation representation. For an element x of X, let Y
be the orbit λG(x) of x. Then the restriction (Y, G, λ) to Y is transitive.

The most important example of a transitive action is given by the following
proposition.

PROPOSITION 10.19 (Action on cosets.)
Let H be a subgroup of a group G. Consider the set

G/H = {xH | x in G} (10.8)

of left cosets of H. Then a transitive action of G on G/H is defined by setting

λg(xH) = gxH (10.9)

for each g in G.

PROOF First, verify the conditions (a) and (b) of Proposition 10.5.

(a): For the identity element e of G, (10.9) gives

λe(xH) = exH = xH

for each element x of G.

(b): For elements g and h of G, (10.9) gives

λgh(xH) = (gh)xH = g(hxH) = λg

(
λh(xH)

)

for each element x of G.

Now consider elements x and y of G, with corresponding elements xH and
yH of G/H. Then for g = y · x−1 in G, we have

λg(xH) = g · xH = y · x−1 · xH = yH ,

so the action of G on G/H is transitive.
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DEFINITION 10.20 (Homogeneous spaces.) Let H be a subgroup of
a group G.

(a) The set G/H of (10.8) is called a homogeneous space.

(b) The action (G/H,G, λ) of Proposition 10.19 is called the homogeneous
space action of G on G/H. This action is often denoted simply by G/H.

Example 10.21
Let G be a group, with identity element e.

(a) The homogeneous space G/G is trivial.

(b) For the trivial subgroup {e} of G, the homogeneous space G/{e} is
essentially the left regular representation of G, elements x of G just
being rewritten as singleton sets {x}.

Up to renaming, such as x 7→ {x} in Example 10.21(b), every transitive
action is a homogeneous space.

THEOREM 10.22 (Transitive actions are homogeneous spaces.)
Let µ : G → X! be a transitive action of a group G on a nonempty set X.

For each element a of X, consider the stabilizer Ga of a under the action
(X, G, µ). Let (G/Ga, G, λ) be the homogeneous space action of G on G/Ga.

(a) There is a well-defined bijection

b : G/Ga → X;h ·Ga 7→ µh(a) .

(b) For elements g and h of G,

b
(
λg(h ·Ga)

)
= µg

(
b(h ·Ga)

)
.

PROOF (a): The map b is a well-defined injection, since

h ·Ga = k ·Ga ⇔ k−1h lies in Ga

⇔ µk−1h(a) = a ⇔ µh(a) = µk(a)

for elements h and k of G. The map b surjects, since (X, G, µ) is transitive.

(b): We have

b
(
λg(h ·Ga)

)
= b(gh ·Ga) = µgh(a) = µg

(
µh(a)

)
= µg

(
b(h ·Ga)

)

for elements g and h of G.
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Theorem 10.22 reduces the analysis of any transitive action (X,G, µ) of a
group G to computations entirely within the group itself. Pick a fixed element
a of X, and use the bijection b of Theorem 10.22(a) to label the elements
µh(a) of X by left cosets h · Ga of the stabilizer Ga. Then, to compute the
effect of the action µg on an element labeled h ·Ga, Theorem 10.22(b) shows
that it suffices to compute the effect of the corresponding homogeneous space
action λg on the coset h ·G. With λg(h ·Ga) as the coset gh ·Ga, we obtain
µg

(
b(h ·Ga)

)
as the element labeled by gh ·Ga. The procedure is illustrated

in Figure 10.2.

Homo-
geneous
space
G/Ga

Gah ·Gagh ·Ga

'

&

$

%

"!

#Ã

"!

#Ã

"!

#Ã
aµh(a)µgh(a)

??

¾
λg

¾
µg

Labeling

b

Labeling

b

Transitive

action

(X, G, µ)

FIGURE 10.2: Tracking a transitive action in a homogeneous space.

Theorem 10.22 has a corollary that is very useful for counting.

COROLLARY 10.23 (Orbit sizes divide the group order.)

Let (X,G, µ) be a permutation representation of a finite group G. Then for
each element a of X, the orbit µG(a) is finite, with size |µG(a)| = |G|/|Ga|
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equal to the index of the stabilizer Ga. In particular, the size of each orbit is
a divisor of the order of G.

PROOF Apply Theorem 10.22(a) to the transitive action
(
µG(a), G, µ

)
obtained by restriction of (X, G, µ) to the orbit µG(a) of a. The bijection b
establishes an isomorphism between the orbit and the set of left cosets of the
stabilizer Ga in G.

Example 10.24 (Matrix action.)
Let F be a finite field, with q elements. Consider the left multiplication

action (10.3) of GL(2, F ) on F 1
2 , with orbits as described in Example 10.17.

The set F 1
2 of two-dimensional column vectors has q2 elements, so the orbit

of nonzero vectors has q2 − 1 elements. Corollary 10.23 then shows that the
size of GL(2, F ) is a multiple of q2 − 1. In fact, each invertible matrix

A =
[
a11 a12

a21 a22

]

over the field F is constructed from two column vectors

a1 =
[
a11

a21

]
and a2 =

[
a12

a22

]
.

In setting up the matrix A, the first vector a1 may be chosen as any of the
q2−1 nonzero vectors in F 1

2 . In order to guarantee that det A 6= 0, the second
vector a2 must then avoid the q scalar multiples la1 with l in F . There are
q2 − q such choices for a2. In total, there are

(q2 − 1)(q2 − q) = (q + 1)q(q − 1)2

elements in the group GL(2, F ).

10.4 Fixed points

Let (X, G, λ) be a permutation representation of a group (G, ·, e) on a set
X. Let x be an element of X, and let g be an element of G. Then x is said
to be a fixed point of g (under λ) if

λg(x) = x . (10.10)

Note that x is a fixed point of g if and only if g lies in the stabilizer Gx of x.
By Proposition 10.5, each element of X is a fixed point of e.
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Example 10.25 (Conjugation action.)
Let G be a group. Consider the conjugation action (G,G, τ) of G on itself

— compare (10.7). Then elements x and y of G commute if and only if x is
a fixed point of y under τ :

x · y = y · x if and only if x = y · x · y−1 = τy(x) .

Each element of G is a fixed point of a central element z. In other words, the
center Z(G) is the set of elements z commuting with each element x of G.

Example 10.26 (Regular action.)
Let (G, ·, e) be a group. Consider the regular representation (G,G, λ) of G

on itself — compare Example 10.2. As observed above, each element of G is
a fixed point of e under λ. For elements x and g of G, the element x is a
fixed point of g under λ if and only if g · x = x, which happens if and only
if g = e. Thus a nonidentity element of G has no fixed points in the regular
representation.

Example 10.27 (Plane rotations.)
Consider the rotational representation (R2

1,R, κ) of the additive group (R, +, 0)
of real numbers from Example 10.11. Note that the origin O is a fixed point
of every real number θ. However, a real number θ that is not a multiple of 2π
has no other fixed points.

Now let (X,G, λ) be a permutation representation of a finite group (G, ·, e)
on a finite set X. For each element g of G, let πλ(g) or π(g) denote the
number of fixed points of g under λ. According to Example 10.26,

π(g) =

{
n if g = e

0 otherwise
(10.11)

in the regular representation of a finite group (G, ·, e) of order n.
The following result relates the number of orbits in the representation to

the number of points that are fixed by each element of G.

THEOREM 10.28 (Burnside’s Lemma.)
Let G be a group of finite order |G|. In a permutation representation (X, G, λ)
of G on a finite set X, the total number of orbits is equal to the average number

1
|G|

∑

g∈G

π(g) (10.12)

of fixed points of an element of G. In particular, the sum
∑

g∈G

π(g)
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of the number of fixed points π(g) of each element g of G is a multiple of |G|.

PROOF Consider the subset

F = {(g, x) in G×X | λg(x) = x}
of G × X. The number of elements in the finite set F will be computed in
two different ways. Equating the two answers will then prove the theorem.

First, consider the pairs (g, x) in F for a particular element g of G. Each
such pair comprises a fixed point x of g in its second slot, so there are π(g)
such pairs altogether. Summing over all the group elements g, we obtain

|F | =
∑

g∈G

π(g) (10.13)

as the first expression for |F |.
Now let Orb(λ) be the set of orbits in the action (X, G, λ). The set F may

be described as the disjoint union

F =
⋃

x∈X

Gx × {x}

of products of stabilizers with singletons containing points of X. With an
application of Corollary 10.23, we obtain

|F | =
∑

x∈X

|Gx| =
∑

x∈X

|G|/|λG(x)| = |G|
∑

x∈X

1
/|λG(x)|

= |G|
∑

Y ∈Orb(λ)

∑

x∈Y

1
/|Y | = |G|

∑

Y ∈Orb(λ)

1

= |G| · |Orb(λ)| . (10.14)

Equating the two quantities (10.13) and (10.14) for |F | yields the desired
expression (10.12) for the number |Orb(λ)| of orbits.

Example 10.29 (Regular action.)
Consider the regular representation of a finite group G with n elements.

Using (10.11), the expression (10.12) for the number of orbits becomes

1
n

(
n + (n− 1) · 0)

= 1 ,

which of course is the correct count for a transitive representation.

Example 10.30 (Matrix action.)
Let F be the 2-element field Z/2. Consider the left multiplication action(
F 1

2 , GL(2, F ), L
)

from Example 10.4. As discussed in Example 10.17, the
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Element g of Set of fixed points Number π(g)

GL(2, F ) of g in F 1
2 of fixed points

[
1 0
0 1

]
F 1

2 4

[
0 1
1 0

] {[
0
0

]
,

[
1
1

]}
2

[
1 0
1 1

] {[
0
0

]
,

[
0
1

]}
2

[
1 1
0 1

] {[
0
0

]
,

[
1
0

]}
2

[
1 1
1 0

] {[
0
0

]}
1

[
0 1
1 1

] {[
0
0

]}
1

FIGURE 10.3: Fixed points in the action of GL(2, F ) on F 1
2 , for F = Z/2.

number of orbits in this representation is 2. The various elements of GL(2, F ),
with their fixed point sets, are listed in Figure 10.3.

The expression (10.12) for the number of orbits becomes

1
6
(
4 + 3 · 2 + 2 · 1)

,

which reduces correctly to 2. In fact, this count may be used as proof that
the set of nonzero column vectors forms a single orbit.

10.5 Faithful actions

Consider the rotational representation

κ : R→ (R1
2)!; θ 7→ κθ (10.15)

of Example 10.11. Recall that for a real number θ, the action κθ rotates
the plane R1

2 counterclockwise by an angle of θ radians. Thus if distinct real
numbers θ and ϕ differ by a multiple of 2π, their actions κθ and κϕ coincide.
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DEFINITION 10.31 (Faithful action.) A permutation action

λ : G → X!; g 7→ λg

of a group G is said to be faithful if the homomorphism λ is injective.

Example 10.32 (Plane rotations.)
The rotational representation (10.15) is not faithful.

Example 10.33 (Regular actions.)
By Cayley’s Theorem, the regular representation of a group G is faithful.

Faithful permutation actions are very close to groups of permutations.

PROPOSITION 10.34
Let (X, G, λ) be a faithful permutation action of a group G on a set X. Then
the abstract group G is isomorphic to a group of permutations of the set X.

PROOF The injective group homomorphism λ : G → X!; g 7→ λg yields
an isomorphism

G → λ(G); g 7→ λg

of G with the group λ(G) of permutations of the set X.

In the converse direction, let G be a group of permutations on a set X.
Let j : G ↪→ X!; g 7→ g be the inclusion of G as a subgroup of X!. Then the
permutation action (X, G, j) of G is faithful. The following theorem provides
a more general source of faithful actions.

THEOREM 10.35 (Every action induces a faithful action.)
Let (X,G, λ) be a permutation representation of a group G. Let Kerλ be the
group kernel of the homomorphism λ : G → X!. For each element g of G, let
g denote the coset (Ker λ)g. Let G denote the quotient group G/Ker λ. Then
there is a faithful action (X,G, λ) given by a well-defined homomorphism

λ : G → X!; g 7→ λg .

PROOF Apply the First Isomorphism Theorem for groups to the group
homomorphism

λ : G → X!; g 7→ λg ,

factorizing λ as the composite j ◦ b ◦ s of the projection G → G; g 7→ g, the
isomorphism b : G → λ(G); g → λg, and the insertion j : λ(G) ↪→ X!. Then
λ, as the composite b ◦ s, is injective.



GROUP ACTIONS 267

COROLLARY 10.36
The kernel of the representation λ is the intersection

Ker λ =
⋂

x∈X

Gx

of the stabilizers Gx of the elements x of X.

PROOF An element g of G lies in the kernel Ker λ if and only if

λg(x) = x

for each x in X. This happens if and only if g lies in Gx for each x in X.

DEFINITION 10.37 Let (X, G, λ) be a permutation representation of a
group G. Then the faithful representation (X,G, λ) of Theorem 10.35 is called
the faithful representation (or faithful action) induced by (X, G, λ).

Example 10.38
The rotational representation

(
R1

2,R, κ
)

of Example 10.11 induces a faithful
permutation representation

(
R1

2,R/2πZ, κ
)

of the group (R/2πZ, +).

Example 10.39
Let G be a group. The conjugacy action (G, G, τ) of G induces a faithful

action (G, Inn(G), τ) of the inner automorphism group Inn(G) of G.

10.6 Cores

Suppose that (X, G, λ) is an action of a group (G, ·, e). Let x and y be
elements of X that lie in the same orbit, say λg(x) = y for some element g of
the group G. Consider an element s of the stabilizer Gx of x in G, so

λs(x) = x.

Now
λg·s·g−1(y) = λg ◦ λs ◦ λg−1(y) = λg ◦ λs(x) = λg(x) = y ,

so that g ·s ·g−1 lies in the stabilizer Gy of y. In other words, when λg(x) = y,
the inner automorphism τg yields a map

τg : Gx → Gy; s 7→ g · s · g−1

from the stabilizer of x to the stabilizer of y. This map is a bijection, with
two-sided inverse τg−1 .
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Two subgroups S and T of a group G are said to be conjugate if there is
an inner automorphism τg of G with τg(S) = T . We obtain the following:

PROPOSITION 10.40 (Conjugacy of stabilizers.)
Let (X, G, λ) be a permutation representation of a group G.

(a) If elements x and y of X lie in the same orbit, then their respective
stabilizers Gx and Gy are conjugate in G.

(b) The conjugate τg(Gx) of the stabilizer Gx of an element x of X is the
stabilizer of the element λg(x) of X.

(c) If the action (X, G, λ) is transitive, then the stabilizers Gx of elements
of X form a full set of conjugate subgroups of G.

Example 10.41
Consider the action of S3 on {0, 1, 2}. The respective stabilizers of the points
0, 1, and 2 are the subgroups {(0), (1 2)}, {(0), (2 0)}, and {(0), (0 1)}. Then

τ(0 1 2) : (1 2) 7→ (2 0) 7→ (0 1) 7→ (1 2)

— compare Exercise 38 in Chapter 2.

Proposition 10.40 has an important application to homogeneous spaces.

DEFINITION 10.42 (The core of a subgroup.) Let H be a subgroup
of a group G. Then the core of H in G is the intersection

CoreG(H) =
⋂

g∈G

τg(H)

of the full set of conjugates of H in G.

THEOREM 10.43 (Stabilizers in homogeneous spaces.)
Let H be a subgroup of a group (G, ·, e). Let (G/H, G, λ) be the corresponding
homogeneous space, with actions

λg : G/H → G/H;x ·H 7→ gx ·H

for elements g of G.

(a) The stabilizer of H in G is H.

(b) For each element g of G, the stabilizer of λg(H) = g ·H in G is τg(H).
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(c) The group kernel of the representation

λ : G → (G/H)!

is the core of H in G. In particular, the core of H is a normal subgroup
of G.

(d) If N is a normal subgroup of G that is contained in H, then N is also
a subgroup of the core of H.

PROOF (a): An element g of G lies in the stabilizer of H if and only if
H = λg(H) = g ·H, so if and only if g lies in H itself.

(b): Apply (a) and Proposition 10.40(b).
(c): Apply (b) and Corollary 10.36.
(d): If a normal subgroup N is contained in H, then N = τg(N) is contained

in each conjugate τg(H) of H.

Parts (c) and (d) of Theorem 10.43 are often summarized by saying that
the core of H is the largest normal subgroup of G that is contained in H.
Theorem 10.43 has a useful corollary.

COROLLARY 10.44 (The index of a core.)
Let G be a group, with a subgroup H of finite index r.

(a) The index of CoreG(H) in G is finite.

(b) The index of CoreG(H) in G is a divisor of r!.

(c) The index of CoreG(H) in G is a multiple of r.

PROOF (a): By Theorem 10.43(c) and Theorem 10.35, the homogeneous
space representation (G/H,G.λ) induces a faithful representation

(
G/H, G/CoreG(H), λ

)

of the quotient group G/CoreG(H). Now Proposition 10.34 implies that the
group G/CoreG(H) is isomorphic to a subgroup S of the finite group (G/H)!
of order r!.

(b): By Lagrange’s Theorem, the order of S is a divisor of r!.
(c): By Lagrange’s Theorem, |G/CoreG(H)| = r · |H/CoreG(H)|.

Example 10.45 (Subgroups of index 2.)
Let G be a group, and let H be a subgroup of index 2. Corollary 10.44 shows
that the proper subgroup CoreG(H) of G has index 2, and therefore coincides
with H. In other words, H is a normal subgroup of G. (Exercise 28 asks for
a direct proof that a subgroup of index 2 is normal.)
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10.7 Alternating groups

Let n be a positive integer, and let

xn > · · · > x1 > x0

be a set of n + 1 distinct real numbers. For α in Sn+1 = {0, 1, . . . , n}! , define
the sign ε(α) of the permutation α to be the quotient

ε(α) =

∏
n≥j>i≥0(xα(j) − xα(i))∏

n≥j>i≥0(xj − xi)
=

∏

n≥j>i≥0

xα(j) − xα(i)

xj − xi
. (10.16)

For example, if α is the permutation (0 1 2) in S3, then

ε(α) =
(x0 − x2)(x0 − x1)(x2 − x1)
(x2 − x1)(x2 − x0)(x1 − x0)

= 1 .

If α is the permutation (0 1) in S3, then

ε(α) =
(x2 − x0)(x2 − x1)(x0 − x1)
(x2 − x1)(x2 − x0)(x1 − x0)

= −1 . (10.17)

The numerator of the left-hand fraction in (10.16) includes all the factors from
the denominator, either with the same or reversed order. Thus the sign of a
permutation is either 1 or −1.

PROPOSITION 10.46
Let n be a positive integer. Then the sign map

ε : Sn+1 → {±1}; α 7→ ε(α) (10.18)

is a group homomorphism from Sn+1 onto the group of units {±1} of the
monoid (Z, ·, 1) of integers.

PROOF For permutations α and β in Sn+1, we have

ε(α ◦ β) =
∏

n≥j>i≥0

xα◦β(j) − xα◦β(i)

xj − xi

=
∏

n≥j>i≥0

xα◦β(j) − xα◦β(i)

xβ(j) − xβ(i)

∏

n≥j>i≥0

xβ(j) − xβ(i)

xj − xi

=
∏

n≥j>i≥0

xα(j) − xα(i)

xj − xi

∏

n≥j>i≥0

xβ(j) − xβ(i)

xj − xi

= ε(α)ε(β) .

By (10.17), ε(0 1) = −1, so ε is surjective.
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DEFINITION 10.47 Let n be a positive integer.

(a) The group kernel Ker ε of the sign homomorphism (10.18) is known as
the alternating group An+1.

(b) A permutation is said to be even if its sign is 1.

(c) A permutation is said to be odd if its sign is −1.

Recall that |Sn+1| = (n+1)!. By the First Isomorphism Theorem for groups
applied to (10.18), it is apparent that

|An+1| = 1
2
(n + 1)!

for each positive integer n.
Although the definition (10.16) of the sign is ideally suited to the proof of

Proposition 10.46, it is not very practical for computation. If x and y are two
distinct elements of a set X, then the cycle

(x y)

that interchanges x and y, while fixing all the other elements of X, is called
a transposition (as an element of the permutation group X!). Transpositions
in Sn+1 are odd:

PROPOSITION 10.48 (Transpositions are odd.)
For a positive integer n, let σ be a transposition (k l) in Sn+1. Then σ is an
odd permutation.

PROOF Suppose that l > k. In order to determine ε(σ), we examine the
factor

xσ(j) − xσ(i)

xj − xi
(10.19)

from the right-hand side of (10.16) for each pair j > i of integers between
n and 0. If the set {j, i} has no element in common with {l, k}, then the
numerator and denominator of (10.19) are equal, canceling to 1. For the
pairs j > l and j > k, the product

(xσ(j) − xσ(l))(xσ(j) − xσ(k))
(xj − xl)(xj − xk)

=
(xj − xk)(xj − xl)
(xj − xl)(xj − xk)

cancels to 1. Similarly, for the pairs l > i and k > i, the product

(xσ(l) − xσ(i))(xσ(k) − xσ(i))
(xl − xi)(xk − xi)

=
(xk − xi)(xl − xi)
(xl − xi)(xk − xi)
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cancels to 1. For l > j and j > k, the product

(xσ(l) − xσ(j))(xσ(j) − xσ(k))
(xl − xj)(xj − xk)

=
(xk − xj)(xj − xl)
(xl − xj)(xj − xk)

reduces to 1. Finally, for the pair l > k, the quotient

xσ(l) − xσ(k)

xl − xk
=

xk − xl

xl − xk

reduces to −1. Overall, ε(σ) = −1.

COROLLARY 10.49

A permutation is even or odd if and only if it can be expressed as a product
of an even or odd number of transpositions respectively.

PROOF Suppose that a permutation α is the product of t transpositions.
Then Proposition 10.48 and Proposition 10.46 show that ε(α) = (−1)t .

Using Corollary 10.49, Proposition 10.46, and the fact that permutations
in Sn+1 decompose as products of disjoint cycles, it is possible to determine
the sign of a given permutation more directly. Noting the equality

(a0 a1 a2 . . . ar) = (a0 ar) ◦ · · · ◦ (a0 a2) ◦ (a0 a1) (10.20)

for distinct elements a0, a1, . . . , ar of n with r+1 ≤ n (Exercise 31), we obtain

ε(a0 a1 . . . ar) = (−1)r :

cycles of odd length are even, while cycles of even length are odd. If a general
permutation α is the product of h cycles of respective lengths l1, . . . , lh, the
sign ε(α) is then given as the power

(−1)h+l1+···+lh

of −1.

Example 10.50

Consider the symmetries of the regular tetrahedron that are discussed in
Study Project 2, Chapter 2. The 8 cycles of length 3 that appear in (2.33) are
even, as are the 4 elements of the Klein 4-group V4 (Example 2.31, page 38).
Together, these 12 even permutations form the full alternating group A4.
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10.8 Sylow Theorems

In the final section of this chapter, we use group actions to relate the order
of a finite group with its structure.

PROPOSITION 10.51
Let p be a prime number. For positive integers a and m, let G be a group of
finite order pam. (The prime p may be a divisor of m.) Let na be the number
of subgroups of G of order pa. Then

na ≡ 1 mod p . (10.21)

In particular, G does have a subgroup of order pa.

PROOF Let Xa be the set of all the pa-element subsets of G, subgroups
or not. For each pa-element subset S of G, define

σg(S) = g · S
for g in G. Since the conditions of Proposition 10.5 are satisfied, we obtain an
action (Xa, G, σ) of G on Xa. For a pa-element subset S of G, Corollary 10.23
shows that the orbit σG(S) contains |G|/|GS | elements, GS being the stabilizer
of S in the action. Now GS · S = S implies that S is a union of right cosets
of the subgroup GS , so |GS | = pb with b ≤ a.

Let x be an element of G. If s is an element of S, then x lies in σxs−1(S).
In other words, for each pa-element subset S of G, the subsets in the orbit
σG(S) cover all of G.

• If no two subsets in the orbit σG(S) overlap, then there are exactly m
subsets in the orbit. Orbits of this kind are called nonoverlapping.
This case obtains precisely when GS is a subgroup of G of size pa.
In particular, GS is the unique member of the orbit that contains the
identity element 1 of G. Thus the number of nonoverlapping orbits is
na, the same as the number of subgroups of size pa.

• Otherwise, the size pam/pb of the orbit σG(S) exceeds m, and thus is
some multiple of pm. Orbits of this kind are described as overlapping.

The sum of all the orbit sizes, the total number of pa-element subsets of a
pam-element set, is (

pam

pa

)
(10.22)

(compare Exercise 43 in Chapter 6). Let k be the number of pa-element
subsets that lie in overlapping orbits. The size of each overlapping orbit is
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congruent to 0 modulo pm, so k ≡ 0 mod pm. There are na nonoverlapping
orbits, each containing m subsets. Thus

(
pam

pa

)
= na ·m + k ≡ na ·m mod pm . (10.23)

If G is the cyclic group Z/pamZ, then there is a unique subgroup 〈m+pamZ〉
of size pa, so na = 1 in this case. Thus the binomial coefficient (10.22) is
congruent to m modulo pm.

Now return to the general group G of order pam. The congruence (10.23)
becomes

m ≡
(

pam

pa

)
≡ na ·m + k ≡ na ·m mod pm .

Since pm divides na ·m−m = (na− 1) ·m, we have p | (na− 1). The desired
congruence (10.21) follows.

Let x be an element of a finite group G. Lagrange’s Theorem shows that
the order |〈x〉| of x is a divisor of |G|. Conversely, for a divisor d of |G|, there
may be no element x of order d. For example, the symmetric group S3 has
no element of order 6. The first consequence of Proposition 10.51 shows that
for prime divisors, the situation is different.

COROLLARY 10.52 (Cauchy’s Theorem.)
If p is a prime divisor of the order of a finite group G, then G contains an

element of order p.

PROOF Taking a = 1 in Proposition 10.51 shows that G has a subgroup
H of order p. Each nonidentity element of H has order p.

We now study subgroups of maximal prime-power order.

DEFINITION 10.53 (Sylow subgroups.) Let G be a nontrivial finite
group of order n. Suppose that n factorizes as a product

n = pe1
1 pe2

2 . . . per
r

of powers of distinct prime factors p1, p2, . . . , pr.

(a) For each such factor pi, a subgroup of G of order pei
i is called a Sylow

pi-subgroup of G.

(b) The set of all Sylow pi-subgroups of G is written as Sylpi
(G).
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THEOREM 10.54 (Sylow’s First Theorem.)
Let G be a finite group, and let p be a prime factor of the order of G. Then

|Sylp(G)| ≡ 1 mod p .

In particular, G has at least one Sylow p-subgroup.

PROOF In Proposition 10.51, take the case where m is coprime to p.

Example 10.55
Consider the alternating group A4, of order 12 = 22 · 3 (see Example 10.50).
The Klein 4-group is the unique Sylow 2-subgroup. The 8 cycles of length 3
that appear in (2.33) pair up, together with the identity element, to form 4
Sylow 3-subgroups. Note that 4 ≡ 1 mod 3.

THEOREM 10.56 (Sylow’s Second Theorem.)
Let G be a finite group, and let p be a prime factor of the order of G.

(a) All the Sylow p-subgroups of G are conjugate.

(b) If |H| = pa for a subgroup H of G, and some positive integer a, then H
is contained in a Sylow p-subgroup of G.

PROOF Let P be a particular Sylow p-subgroup of G. To prove (b),
we will show that H is contained in some conjugate τg(P ) of P . Statement
(a) follows by taking H to be a Sylow p-subgroup of G. In this case, since
|H| = |P | = |τg(P )|, the containment of H in τg(P ) implies the equality of H
and τg(P ).

To prove (b) by contradiction, suppose that H is not contained in any
conjugate τg(P ) of P . Then the intersection

H ∩ τg(P ) = {g in G | g in H and g in τg(P )}

is a proper subgroup of H, so the quotient |H|/|H ∩ τg(P )| is divisible by p
for each element g of G.

For h in H and p in P , define

β(h,p)(x) = h · x · p−1

for x in G. Since

β(k,q)

(
β(h,p)(x)

)
= k(hxp−1)q−1 = (kh)x(qp)−1 = β(k,q)(h,p)(x)

for k in H and q in Q, Proposition 10.5 shows that we obtain an action
(G, H × P, β) of H × P on G.
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The orbit βH×P (1) of the identity element 1 of G is the subset H · P of G.
The stabilizer of 1 is

{(h, p) in H × P | hp−1 = 1} = {(h, h−1) | h in H ∩ P} .

Thus
|H · P | = |H| · |P |/|H ∩ P | . (10.24)

The orbit βH×P (g) of an element g of G is the set HgP (a double coset in the
notation of Exercise 39 in Chapter 4). Apply Proposition 4.47, and (10.24)
with τg(P ) in place of P . The orbit βH×P (g) is seen to have size

|HgP | = |HgPg−1| = |H · τg(P )| = |H| · |τg(P )|
|H ∩ τg(P )| ,

a multiple of p|P |. Since |G| is the sum of the sizes of the orbits, we obtain
the contradiction that |G| is a multiple of p|P |.

COROLLARY 10.57
Let G be a finite group, and let p be a prime factor of the order of G. If P

is a unique Sylow p-subgroup, then P is a normal subgroup of G.

PROOF For each element g of G, consider the conjugate τg(P ). As a
Sylow p-subgroup of G, it coincides with P . Thus P is normal.

Sylow’s Theorems may be used to obtain strong limitations on the number
of Sylow subgroups.

PROPOSITION 10.58
Let G be a finite group, and let p be a prime factor of the order of G. Then

|Sylp(G)| ≡ 1 mod p (10.25)

and
|Sylp(G)|

∣∣∣ |G| . (10.26)

PROOF The congruence (10.25) is just a restatement of Sylow’s First
Theorem. The divisibility relationship (10.26) follows by Corollary 10.23,
since G acts transitively on Sylp(G) by conjugation.

Example 10.59
Let G be a group of order 33. Since 1 is the only divisor of 33 = 3 · 11

which is congruent to 1 modulo 11, Proposition 10.58 shows that there is a
unique Sylow 11-subgroup of G. By Corollary 10.57, this subgroup is normal.
A similar argument shows that there is a unique Sylow 3-subgroup, again a
normal subgroup.
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10.9 Exercises

1. Let (G, ·, e) be a group. Define a map

ρg : G → G;x 7→ x · g−1

for each element g of G. Show that there is a permutation representation

ρ : G → G!; g 7→ ρg . (10.27)

The representation (10.27) is called the right regular representation of
the group G.

2. Let G be a group. For elements g and h of G, show that

λg ◦ ρh = ρh ◦ λg

in the notation of Example 10.2 and Exercise 1.

3. Let G be a group. Show that

τg = λg ◦ ρg

for each element g of G.

4. Let (G, ·, e) be a group. If

λg ◦ ρh(e) = e

for elements g and h of G, show that g = h.

5. Let (X, G, λ) and (Y,G, µ) be actions of a group G.

(a) Show that an action
(X × Y, G, π)

is defined by
πg(x, y) =

(
λg(x), µg(y))

for g in G, x in X, and y in Y . [The action

(X × Y, G, π)

is known as the product of the actions (X,G, λ) and (Y,G, µ).]
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(b) If the sets X and Y are disjoint, show that an action

(X ∪ Y, G, σ)

is defined by

σg(z) =

{
λg(z) for z in X

νg(z) for z in Y

for each g in G. [The action

(X ∪ Y, G, σ)

is known as the sum of the disjoint actions (X, G, λ) and (Y,G, µ).]

6. Show that the center of a group is abelian.

7. Show that a group G is abelian if and only if G = Z(G).

8. For an abelian group G, show that the conjugation action is the trivial
representation of the group G on the set G.

9. Let N be a subgroup of the center of a group G.

(a) Show that N is a normal subgroup of G.

(b) If the quotient group G/N is cyclic, show that G is abelian.

10. Consider the symmetric group S3.

(a) Show that the center of S3 is trivial.

(b) Show that S3
∼= Inn(S3).

11. Show that the center of the general linear group GL(2, F ) over a field
F is the set { [

x 0
0 x

] ∣∣∣∣ 0 6= x in F

}

of nonzero multiples of the identity matrix.

12. Show that there is an isomorphism G/Z(G) ∼= Inn(G) for each group G.

13. Let G be a group.

(a) Using the notation of Example 10.2 and Exercise 1, show that the
map

T : G×G → G!; (g, h) 7→ λg ◦ ρh

is a group homomorphism.

(b) Determine the kernel of the homomorphism T .
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14. For each normal subgroup N of a group (G, ·, e), define

N = {(g, n · g) | g in G , n in N} .

(a) Show that N is a subgroup of G×G.
(b) Show that a normal subgroup N of G is contained in Z(G) if and

only if {e} is a normal subgroup of N .

15. In Example 10.11, verify that κ gives an action of the additive group
(R,+, 0) of real numbers on the plane R1

2. (Compare Exercise 34 in
Chapter 4.)

16. Prove Proposition 10.14.

17. For a field F , consider the action (10.3) of GL(2, F ) on F 1
2 .

(a) For each nonzero vector

x =
[
x1

x2

]

in F 1
2 , show that there is an invertible matrix

A =
[
a11 a12

a21 a22

]

in GL(2, F ) such that

LA

[
1
0

]
= x.

(b) Conclude that the set of nonzero 2-dimensional column vectors
forms a single orbit in the action (10.3).

18. Let H be a subgroup of a group G. Let (X,G, λ) be an action of G,
with corresponding restriction (X,H, λ) to the subgroup H. Let x be
an element of X.

(a) Show that the orbit λH(x) is a subset of the orbit λG(x).
(b) Show that the orbit λG(x) is a disjoint union of orbits λH(y).

19. Consider a permutation α = (x1 x2 . . . xr−1 xr) of a finite set X. Show
that a permutation γ of X is conjugate to α in the symmetric group X!
if and only if γ = (y1 y2 . . . yr−1 yr) for distinct elements y1, . . . , yr of
X. (See Exercise 38 in Chapter 2.)

20. Determine the conjugacy class of the matrix
[
1 0
1 1

]

in the group GL(2,Z/2) of invertible 2× 2 matrices over Z/2.
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21. For a field F , define the trace function

tr : F 2
2 → F ;

[
a11 a12

a21 a22

]
7→ a11 + a22

— compare (5.17). Let A and B be invertible 2× 2 matrices over F .

(a) Show that tr(AB) = tr(BA).

(b) If A and B are conjugate in the group GL(2, F ), show that tr(A) =
tr(B).

(c) Give an example to show that tr(A) = tr(B) does not imply the
conjugacy of A and B.

22. Let (M, ·, e) be a monoid, with group of units M∗. For u in M∗, define

λu : M → M ; x 7→ u ·m. (10.28)

(a) Show that (M, M∗, λ) is an action of M∗ on M .

(b) Show that M is a group if and only if (M, M∗, λ) is transitive.

23. Consider the permutation representation
(
Z,Z∗, λ

)
given by (10.28) for

the monoid (Z, ·, 1) of integers under multiplication. Show that the
orbits are the classes of the kernel relation ker sq of the squaring function
(2.3).

24. Consider the permutation representation
(
Z/8, (Z/8)∗, λ

)
given by (10.28)

for the monoid (Z/8, ·, 1) of integers modulo 8 under multiplication.

(a) Determine the orbits.

(b) Determine the number π(u) of fixed points for each element u of
(Z/8)∗.

(c) Verify (10.12) for this action.

25. Repeat Exercise 24 for the monoid (Z/9, ·, 1) of integers modulo 9 under
multiplication.

26. Let G be a finite group with just two conjugacy classes. Suppose that
the order of G is n.

(a) Show that all the centralizers of nonidentity elements of G are
conjugate.

(b) Show that the centralizer of a nonidentity element has order

n/(n− 1) .

(c) Conclude that G has order 2.
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27. Let G be a group of order 35, and let H be a subgroup of order 7. Show
that H is a normal subgroup of G.

28. Let G be a group, and let H be a subgroup of index 2 in G. Give
a direct proof that H is a normal subgroup of G (without invoking
Corollary 10.44).

29. Let G be a group of finite order n. Suppose that n factorizes into a
product

n = pe1
1 pe2

2 . . . pek

k

of powers of prime numbers p1, . . . , pk, with p1 < p2 < · · · < pk. If H is
a subgroup of G of index p1, show that H is a normal subgroup of G.

30. Show that a permutation α is odd if and only if its inverse α−1 is odd.

31. Verify (10.20) by showing that both sides have the same effect on each
element j of n.

32. Determine the signs of each of the following permutations:

(a) (0 1 2) ◦ (3 4) ◦ (5 6) ;

(b) (0 1 2 3 4 5) ◦ (6 7 8 9) ;

(c) (0 1 2 3 4 5) ◦ (2 4 6 7) .

33. Show that the identity permutation cannot be expressed as a product

σ1 ◦ σ2 ◦ · · · ◦ σh

of an odd number h of (not necessarily distinct) transpositions σ1, σ2,
. . . , σh.

34. A nonidentity element x of a group (G, ·, e) is an involution if

x2 = e .

For a positive integer n, show that each involution in the symmetric
group Sn+1 is a product of disjoint transpositions.

35. Let G be a group in which each nonidentity element is an involution.
Show that G is abelian.

36. Determine the conjugacy class of the 3-cycle (0 1 2) in each of the
following groups:

(a) The symmetric group S3;

(b) The symmetric group S4;

(c) The alternating group A4.
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37. Consider an integer n > 1.

(a) Show that each transposition in the symmetric group Sn may be
expressed as a product of transpositions from the set

Tn = {(k − 1 k) | 0 < k < n} .

(b) Show that each element of the symmetric group Sn is a product of
transpositions from the set Tn .

(c) Write each element of the symmetric group S3 as a minimal product
of elements of the set

T3 = {(0 1), (1 2)} .

(d) Express the element (0 2) of the symmetric group S3 in two different
ways as a minimal product of elements of the set

T3 = {(0 1), (1 2)} .

38. Let S be a subset of a finite group (G, ·, e).
(a) Show that if

2|S| > |G| , (10.29)

then S · S = G.
(b) Show that the strictness of the inequality in (10.29) is essential.

39. Show that the Klein 4-group V4 is a normal subgroup of the alternating
group A4.

40. Determine the Sylow subgroups of the symmetric group S3.

41. Let G be a group of order 15. Show that the Sylow subgroups of G are
normal.

42. Consider the set

G =
{ [

x t
0 y

] ∣∣∣∣ x, y, z in Z/3 , xy 6= 0
}

of invertible upper triangular matrices over the ring Z/3 of integers
modulo 3.

(a) Show that G forms a group under matrix multiplication.
(b) Show that |G| = 12.
(c) Show that the diagonal matrices in the set G form a subgroup D

of order 4.
(d) Is D a normal subgroup of G?
(e) Determine whether the group G is or is not isomorphic to the

alternating group A4. (Hint: Consider Sylow 2-subgroups.)
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10.10 Study projects

1. Even and odd functions. Consider the set C(R) of all continuous
functions f : R→ R. For such a function, define

Tf : R→ R;x 7→ f(−x) .

Define f to be even if Tf = f , and odd if Tf = −f (see Figure 10.4).

-

6(i)

x

g

O

(ii)

-

6

x

h

O

FIGURE 10.4: (i) An even function g. (ii) An odd function h.

(a) Show that the assignments (0 1) 7→ T and (0) 7→ idC(R) give an
action of the symmetric group S2 = {(0), (0 1)} on C(R).

(b) For each natural number n, show that the power function xn is
even if n is even, and odd if n is odd.

(c) Show that each continuous function f is the sum g + h of an even
function g and an odd function h.

(d) Suppose that a continuous function f is both even and odd. Show
that f is identically zero.

(e) If f : R→ R is a continuous odd function, show that
∫ r

−r

f(x)dx = 0

for each positive real number r.
(f) If f : R → R is a continuous odd function, what is the value of

f(0)? Justify your answer.
(g) If f : R→ R is a differentiable even function, what is the value of

f ′(0)? Justify your answer.
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2. The projective line. Let F be a field. In the plane F 1
2 , each line

through the origin is the set

Xh =
{[

x1

x2

] ∣∣∣∣ h1x1 + h2x2 = 0
}

of solutions

x =
[
x1

x2

]

to the matrix equation hT x = 0 or

[
h1 h2

] [
x1

x2

]
= 0

for a nonzero row vector
[
h1 h2

]
, the transpose hT of a column vector

h =
[
h1

h2

]
.

The vertical line (or x2-axis) is X[1 0]. Each nonvertical line, of slope
m, is X[m −1]. Note that Xh = Xk if and only if h = ck for a nonzero
constant c in F . The set of all the lines Xh through the origin is called
the projective line or the 1-dimensional projective space PG(1, F ) over
the field F . In this context, a line Xh through the origin in the plane
F 1

2 is called a point on the projective line PG(1, F ).

(a) Consider the action
(
F 1

2 , GL(2, F ), L
)

of Example 10.4, with

LA(x) = Ax

for a matrix A in GL(2, F ) and a column vector x in F 1
2 . For each

point Xh on the projective line PG(1, F ), show that

ΛA(Xh) = {LA(x) | x in Xh} (10.30)

is again a point on the projective line.
(b) Show that ΛA(Xh) = X(A−1)T h.
(c) Show that there is an action

(
PG(1, F ), GL(2, F ), Λ

)

of GL(2, F ) on PG(1, F ) with ΛA defined by (10.30).
(d) Show that the action

(
PG(1, F ), GL(2, F ),Λ

)
is transitive.

(e) Show that a line Xh through the origin in F 1
2 is a fixed point of

an invertible matrix A in the action
(
PG(1, F ),GL(2, F ), Λ

)
if and

only if the nonzero members of Xh are eigenvectors of A.
(f) For the 2-element field F = Z/2, determine the set of fixed points

in PG(1, F ) for each element A of GL(2, F ).
(g) Show that GL(2,Z/2) ∼= S3.
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3. The Class Equation. Let (G, ·, e) be a group of finite order n, with
conjugacy classes

C1 = {e}, C2, . . . , Cs .

Applying Proposition 10.40(b) to the conjugacy action (G,G, τ) of G, it
is apparent that for 1 ≤ i ≤ s, the various elements x of the class Ci all
have conjugate centralizers CG(x). Let ki denote the common order of
the centralizers CG(x) of the elements x of Ci. In particular, note that
k1 = n.

(a) Show that |Ci| = n/ki for 1 ≤ i ≤ s.
(b) Obtain the Class Equation

n = 1 +
s∑

i=2

n

ki
(10.31)

or its equivalent form

1 =
s∑

i=1

1
ki

. (10.32)

(c) Suppose that a finite group has prime power order pe. By reading
the Class Equation (10.31) modulo p, show that C1 cannot be the
only conjugacy class containing just one element. Conclude that a
group of prime power order has a nontrivial center.

(d) If p is a prime number, show that a group of order p2 is abelian.
(e) For a prime number p, consider the set

Up =

{


1 x z
0 1 y
0 0 1




∣∣∣∣∣ x, y, z in Z/p

}

of 3×3 matrices over Z/p. Show that under matrix multiplication,
Up forms a nonabelian group of order p3. Determine Z(Up).

(f) Prove the following statement by induction on the positive integer
s: For each positive real number r, there are only finitely many
(and maybe no) decreasing sequences

k1 ≥ k2 ≥ · · · ≥ ks

of s positive integers ki such that

r =
s∑

i=1

1
ki

. (10.33)

[Hint: If (10.33) holds, then 0 < ks ≤ s/r.]
(g) By considering the Class Equation in its alternative form (10.32),

show that there are only finitely many possible orders n for a finite
group with a fixed number s of conjugacy classes. (Hint: k1 = n.)
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4. Simple groups. A nonabelian group is said to be simple if it has no
proper, nontrivial normal subgroups. Suppose that a group G has a
normal subgroup N . Then many properties of G (such as the order)
may be recovered from the smaller groups G/N and N . This kind of
decomposition continues until we reach simple groups or abelian groups.
Thus determination of the simple groups is an important basic step
towards the study of general groups.

Consider the group A5, of order 60.

(a) Show that A5 contains 20 permutations of the form (a b c), all of
which are conjugate in A5.

(b) Show that A5 contains 15 permutations of the form (a b)(c d), all
of which are conjugate in A5.

(c) Show that A5 contains 24 permutations of the form (a b c d e).

(d) Show that the 24 permutations of the form (a b c d e) break up
into two conjugacy classes in A5, each of size 12.

(e) Show that the conjugacy classes of A5 have respective sizes

1, 20, 15, 12, 12 . (10.34)

(f) Show that no sum of numbers from the list (10.34), except for 1
and 60, is a divisor of 60.

(g) Given that a normal subgroup N of A5 is a union of conjugacy
classes, with |N |

∣∣ 60, show that A5 is simple.

10.11 Notes

Section 10.1

In a permutation representation (X, G, λ), the stabilizer Gx of a point x of
X is also known as the isotropy subgroup or inertial subgroup.

Section 10.4

W. Burnside was an English mathematician who lived from 1852 to 1927.

Section 10.8

A.L. Cauchy was a French mathematician who lived from 1789 to 1857.
L. Sylow (or Sylov) was a Norwegian mathematician who lived from 1832 to
1918. (His name is pronounced “seal off,” not “sigh low.”)



Chapter 11

QUASIGROUPS

The multiplication in a group (G, ·) satisfies two key properties. Along with
associativity, there is the property discussed in Corollary 4.54 (page 86): If
the equation

x · y = z

holds in G, then knowledge of any two of the elements x, y, z of G specifies
the third uniquely. In particular, the latter property implies that the body
of the multiplication table of a finite group is a Latin square (Theorem 4.55,
page 86). For many purposes, the combination of these two group properties
is too strong, and it becomes necessary to consider sets that are closed under
a multiplication satisfying just one of the two properties. Sets closed under an
associative multiplication are semigroups. This chapter studies sets that are
closed under a multiplication satisfying the second property. Such structures
are known as quasigroups.

11.1 Quasigroups

DEFINITION 11.1 (Quasigroups.) Let a given set Q be closed under a
multiplication x · y or xy of its elements x, y. Suppose that when the equation

x · y = z

holds for elements x, y, z of Q, then knowledge of any two of x, y, z specifies
the third uniquely. In this case, the structure (Q, ·) or Q is said to be a
quasigroup.

By Corollary 4.54 (page 86), each group (G, ·) forms a quasigroup. The
empty set also forms a quasigroup: There are no elements for which the
closure and equation-solving conditions of Definition 11.1 have to be checked.
This quasigroup is associative, since it contains no counterexamples to the
associative law. The following examples give nonassociative quasigroups.

287
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Example 11.2 (Subtraction modulo 4.)
Consider the set Z/4 of integers modulo 4, with the operation of subtraction.
Consider the equation

x− y = z (11.1)

between elements x, y, z of Z/4. If x and y are given, then (11.1) specifies z
uniquely. If (11.1) holds, and y, z are given, then x is specified uniquely as
x = y + z. If (11.1) holds, and x, z are given, then y is specified uniquely as
y = x− z. Thus (Z/4,−) is a quasigroup. Since

(1− 1)− 1 = 3 6= 1 = 1− (1− 1) ,

the associative law is not satisfied: The quasigroup is not a group.

Arguing as in Example 11.2, it may be shown that the set of integers forms
a nonassociative quasigroup under the operation of subtraction (Exercise 1).

Example 11.3 (Arithmetic means.)
Consider the set R of real numbers. The arithmetic mean of two real numbers
x and y is

x ◦ y =
x + y

2
.

Geometrically, the arithmetic mean represents the midpoint of the real line
segment from x to y (Figure 11.1). Note that x ◦ y = y ◦ x, so ◦ gives
a commutative multiplication on the set R of real numbers. Consider the
equation

x ◦ y = z (11.2)

between real numbers x, y, and z. Certainly the arithmetic mean z is uniquely
specified by x and y. If y and z are given, then x is uniquely specified as
x = 2z − y. Similarly, y is uniquely specified by (11.2) in terms of x and z.
Thus (R, ◦) is a quasigroup. Since

(0 ◦ 4) ◦ 8 = 2 ◦ 8 = 6 6= 3 = 0 ◦ 6 = 0 ◦ (4 ◦ 8) ,

the associative law is not satisfied: The quasigroup is not a group.

0 x x ◦ y y
-

FIGURE 11.1: The arithmetic mean x ◦ y of real numbers x and y.
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Example 11.4 (Nonzero bit strings.)
Fix a natural number r. The set

(
Z/2

)r+1 of bit strings of length r + 1
carries the componentwise abelian group structure inherited from the group
(Z/2, +) of integers modulo 2 (Example 4.35, page 78). The zero element of
the additive group (

(
Z/2

)r+1
,+) is the string 000 . . . 00 of r+1 zeroes. Let Pr

denote the subset of
(
Z/2

)r+1 consisting of nonzero bit strings. The set Pr has
2r+1 − 1 elements, which may be considered as the binary expansions of the
positive integers less than 2r+1. It is often convenient to write the elements
of Pr as such integers (using base ten expansions), rather than writing long
bit strings. Thus P1 becomes

{01, 10, 11} or {1, 2, 3} ,

while P2 becomes

{001, 010, 011, 100, 101, 110, 111} or {1, 2, 3, 4, 5, 6, 7} .

Now define a multiplication ∗ on Pr by

x ∗ y =

{
x if x = y ;
x + y if x 6= y .

(11.3)

This means that in the equation

x ∗ y = z

for elements x, y, z of Pr, either x = y = z or

x + y + z = 0

in the group (
(
Z/2

)r+1
,+). At any rate, the bit string quasigroup (Pr, ∗)

is a quasigroup for each natural number r, and is not a group for r > 0
(Exercise 4).

11.2 Latin squares

By definition, quasigroups satisfy the property (Corollary 4.54, page 86)
ensuring that the body of a finite group multiplication table is a Latin square.
Thus the body of the multiplication table of a finite (nonempty) quasigroup
will also be a Latin square. For illustration, the multiplication table of the
quasigroup (Z/4,−) of Example 11.2 is shown in Figure 11.2. Note that each
of the four integers modulo 4 appears exactly once in each row and each
column of the body of the table.
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− 0 1 2 3

0 0 3 2 1

1 1 0 3 2

2 2 1 0 3

3 3 2 1 0

FIGURE 11.2: Subtraction modulo 4.

In Figure 11.2, it is possible to change the column labels, making the table
that results present the addition operation for the group of integers modulo 4
(Exercise 6). In general, however, there may be no way to label a Latin square
so that it forms the body of a group multplication table. (In Section 11.7, it
will be shown that the smallest such Latin square has size 5× 5.) But as the
following theorem indicates, a Latin square always gives a quasigroup table.

THEOREM 11.5 (Latin squares as quasigroup tables.)
A finite, nonempty set Q with a multiplication · forms a quasigroup (Q, ·) if

and only if the body of the multiplication table of (Q, ·) forms a Latin square.

PROOF If (Q, ·) is a finite, nonempty quasigroup, then the argument
showing that the body of the multiplication table of (Q, ·) forms a Latin square
is exactly the same as the argument used to prove Theorem 4.55 (page 86) —
compare Exercise 7.

Conversely, suppose that Q has n elements, say x1, . . . , xn in a certain order.
Consider the multiplication table of (Q, ·), with the rows and columns each
labeled by the elements x1, . . . , xn in order. Suppose that the body of the table
forms a Latin square. Note that for 1 ≤ i, j ≤ n, the table entry appearing in
the row labeled xi and the column labeled xj is xi ·xj (Figure 11.3). Suppose
that the equation

xi · xj = xk (11.4)

holds in (Q, ·), with 1 ≤ i, j, k ≤ n. If xi and xj are given, then xk is specified
uniquely in (11.4) by the multiplication · defined on Q. Now suppose that xi

and xk are given in Q, so that (11.4) holds. Consider the table row labeled
by the element xi. Since the body of the table is a Latin square, this row
contains the element xk exactly once. Let xj be the label of the column in
which this table entry xk appears. Then xj is the unique solution of (11.4)
for the given xi and xk. In similar fashion, it may be shown that (11.4)
has a unique solution xi for given xj and xk (Exercise 8). Thus (Q, ·) is a
quasigroup.
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(Q, ·)

x1

xi

xn

xi · xj

x1 xj xn

FIGURE 11.3: A multiplication table.

Theorem 11.5 provides a direct way to construct finite quasigroups. We
first build a Latin square, and then make it into a quasigroup multiplication
table by providing it with row and column labels taken from the set of entries
of the square (Figure 11.4). Although it is customary and convenient to use
these labels in a specified order (for example, increasing numerical order as
in Figure 11.4), the labels may be applied in any order to give a quasigroup
multiplication table.

1 3 2 5 6 4
3 2 1 6 4 5
2 1 3 4 5 6
4 5 6 1 2 3
5 6 4 2 3 1
6 4 5 3 1 2

· 1 2 3 4 5 6

1 1 3 2 5 6 4
2 3 2 1 6 4 5
3 2 1 3 4 5 6
4 4 5 6 1 2 3
5 5 6 4 2 3 1
6 6 4 5 3 1 2

FIGURE 11.4: From a Latin square to a quasigroup multiplication table.
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There are various approaches to the construction of Latin squares. We
may certainly take the body of any finite, nonempty group or quasigroup
multiplication table. Another approach is to build up the Latin square by
gradually adding entries until the square is complete. At each stage, we must
make sure that no entries are repeated in any row or column of the partial
table. At the same time, we may take advantage of the fact that each element
has to appear somewhere in each row and column. Sometimes, this procedure
will stall: There will be no way to complete the partial table to a Latin square.
If this happens, we have to withdraw a step or two, and then try again.

As an example, consider the problem of building up a 4 × 4 Latin square
using the set {0, 1, 2, 3} of integers modulo 4. Suppose that we have reached
the following partial square, which seems to be acceptable since there are no
repeated elements in any row or column:

0 1
2

2

The elements 2 and 3 have to appear somewhere in the first row. The element
2 cannot appear in the second column of the first row, since 2 already appears
in the second row of the second column. This forces 3 to be the second entry
in the first row, leaving 2 to appear in the final entry of the first row:

0 3 1 2
2

2

Now we encounter the problem that the element 2 is appearing twice in the
final column. To avoid this problem, we may go back to the original square
and withdraw the element 2 from the third row of the final column:

0 1
2

Arguing as before, we reach the square
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0 3 1 2
2

which may then be completed to a full Latin square, say

0 3 1 2
1 2 3 0
2 1 0 3
3 0 2 1

for instance.

11.3 Division

In semigroups, such as the multiplicative structures of fields and rings,
division is not always possible. For example, we cannot divide by the element
2 within the ring Z of integers, nor by 0 in the field R of real numbers. On
the other hand, quasigroups are defined so that division is always possible. In
fact, there are two forms of division in a quasigroup: from the left, and from
the right.

DEFINITION 11.6 (Quasigroup divisions.) Let (Q, ·) be a quasigroup.
Consider elements x and y of Q.

(a) The element x\y of Q is defined as the unique solution z of the equation
x · z = y. In other words,

x · (x\y) = y . (11.5)

The element x\y may be read as “x dividing y” or “x backslash y.” The
operation \ on the set Q is known as left division in the quasigroup
(Q, ·).

(b) The element x/y of Q is defined as the unique solution z of the equation
z · y = x. In other words,

(x/y) · y = x . (11.6)

The element x/y may be read as “x divided by y” or “x slash y.” The
operation / on the set Q is known as right division in the quasigroup
(Q, ·).
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Example 11.7 (Subtraction as a right division.)
Consider the abelian group (Z, +) of integers as a quasigroup, in which the

“quasigroup multiplication” is given by addition. Equation (11.6) becomes

(x/y) + y = x .

Thus the right division x/y in the quasigroup (Z,+) is just the subtraction
x− y. More generally, subtraction is right division in any additive group.

Example 11.8 (Division in bit string quasigroups.)
In the bit string quasigroups (Pr, ∗) of Example 11.4,

x ∗ (x ∗ y) = y and (x ∗ y) ∗ y = x (11.7)

(Exercise 12). Thus in this case, x\y = x ∗ y = x/y: The two division
operations are the same as the quasigroup multiplication.

Example 11.9 (Divisions in groups.)
Let (G, ·) be a group, considered as a quasigroup. Then

x\y = x−1y and x/y = xy−1 (11.8)

(Exercise 13). It is worth recalling the role of the right division in a group,
as the single operation that is used in the subgroup test (Proposition 4.43,
page 80; compare Remark 4.44).

Example 11.10 (Reflection as a quasigroup division.)
Consider the arithmetic mean quasigroup structure (R, ◦) on the real line,

as given in Example 11.3. In solving (11.2) for x in terms of y and z, it was
shown there that

z/y = 2z − y .

This operation of right division in the arithmetic mean quasigroup has a
geometrical interpretation, as the reflection of y in a mirror located at z
(Figure 11.5).

0 z/y zZ
Z
Z
Z
Z
Z
Z
Z

y
-

@

FIGURE 11.5: The reflection z/y of y in a mirror at z.
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PROPOSITION 11.11 (Properties of divisions.)
Let (Q, ·) be a quasigroup. Consider elements x and y of Q.

(a) x\(x · y) = y . (c) (y · x)/x = y .

(b) x = y/(x\y) . (d) x = (y/x)\y .

PROOF Suppose x · y = z. Recall that since (Q, ·) is a quasigroup, the
element y is the unique solution t in Q to the equation

x · t = z . (11.9)

On the other hand, (11.5) — with z written in place of y — shows that x\z
is also a solution t to (11.9). Thus x\z = y, as required for (a). Moreover,
since x · (x\z) = z, the equation x = z/(x\z) follows by (11.6). Replacing z
by y yields (b). For (c) and (d), which are similar, see Exercise 14.

Proposition 11.11 yields a new characterization of quasigroups, often more
convenient than Definition 11.1. (The standard labeling of the equations in
the following proposition is justified in Study Project 3.)

PROPOSITION 11.12 (Characterization of quasigroups.)
A set Q forms a quasigroup (Q, ·) under a multiplication · if and only if it is
equipped with a left division \ and a right division / such that

(SL) x · (x\y) = y . (SR) (x/y) · y = x .

(IL) x\(x · y) = y . (IR) (y · x)/x = y .

for all x, y in Q.

PROOF If (Q, ·) is a quasigroup, then (SL) and (SR) are the respective
defining equations (11.5) and (11.6) for the left and right divisions, while
Proposition 11.11(a) and (c) provide (IL) and (IR).

Conversely, suppose that Q is equipped with operations ·, \, and / satisfying
the identities (SL), (IL), (SR), and (IR) of the proposition. Consider the
equation

x · y = z (11.10)

for elements x, y, z of Q. If y and z are fixed, the equation (SR) gives
(z/y) · y = z, so that x = z/y is a solution to (11.10). If s and t are solutions,
(IR) gives s = (s ·y)/y = z/y = (t ·y)/y = t , so the solution is unique. Similar
use of (SL) and (IL) shows that (11.10) has a unique solution for y when x
and z are fixed (Exercise 15). Thus (Q, ·) is a quasigroup.
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One further consequence of Proposition 11.11 is that the left and right
divisions provide new quasigroup multiplications.

THEOREM 11.13 (Divisions as quasigroup multiplications.)
Let (Q, ·) be a quasigroup, with left division \ and right division /. Then

(Q, \) and (Q, /) are quasigroups.

PROOF Consider the equation

x\y = z (11.11)

involving elements x, y, z of Q. If x and y are given, then z is determined
directly and uniquely by (11.11). Now suppose that y and z are given. By
Proposition 11.11(d), the equation (11.11) has a solution x = y/z. But if
t\y = z as well as x\y = z, then Proposition 11.11(b) gives

x = y/z = y/(t\y) = t ,

so the solution is unique. Similar arguments show that (11.11) has a unique
solution for y in terms of x and z, so that (Q, \) becomes a quasigroup. Again,
similar arguments show that (Q, /) is a quasigroup (Exercise 16).

Example 11.14 (Subtraction modulo 4, revisited.)
Theorem 11.13 gives an immediate proof for the content of Example 11.2,

showing that the set Z/4 of integers modulo 4 forms a quasigroup under
subtraction. As noted in Example 11.7, subtraction is the right division for
the addition in any additive group like (Z/4, +).

Another way to obtain new quasigroups is by reversing given quasigroup
multiplications. Suppose that a multiplication · is given on a set Q. Then the
opposite multiplication ◦ is defined by

x ◦ y = y · x

for elements x and y of Q. The following result is readily checked (Exercise 18).

PROPOSITION 11.15
If (Q, ·) is a quasigroup, then so is its opposite (Q, ◦).

DEFINITION 11.16 (Conjugates of a quasigroup.) Let (Q, ·) be a
quasigroup. Then the conjugates of (Q, ·) are the quasigroups (Q, ·) itself, its
opposite (Q, ◦), the quasigroups (Q, \) and (Q, /) of Theorem 11.13, and their
respective opposites (Q, \\) and (Q, //).
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11.4 Quasigroup homomorphisms

Just like rings, groups, and semigroups, quasigroups are abstract algebras
in their own right. As such, they come equipped with their corresponding
concepts of substructure, homomorphism, and product.

DEFINITION 11.17 (Subquasigroups.) Let (Q, ·) be a quasigroup.
Then a subquasigroup S of (Q, ·) is a subset of Q which forms a quasigroup
(S, ·) under the multiplication · of (Q, ·).

Example 11.18 (Subquasigroups of bit string quasigroups.)
The bit string quasigroup P1 of Example 11.4, taken on the subset

{1, 2, 3} = {001, 010, 011}

of the underlying set

{1, 2, 3, 4, 5, 6, 7} = {001, 010, 011, 100, 101, 110, 111}

of the quasigroup (P2, ∗), forms a subquasigroup of (P2, ∗). The various
3-element subquasigroups of (P2, ∗) are displayed by the straight lines and
curved line in Figure 11.6.
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FIGURE 11.6: Subquasigroups of the bit string quasigroup P2.
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Subquasigroups of a quasigroup are characterized by closure under the three
operations of multiplication, left division, and right division.

PROPOSITION 11.19 (The subquasigroup test.)
Let S be a subset of a quasigroup (Q, ·). Then S is a subquasigroup of (Q, ·)

if and only if
x · y , x\y , and x/y lie in S (11.12)

for all x, y in S.

PROOF If S is closed under the three operations of multiplication, left
division, and right division, then Proposition 11.12 shows that S forms a
quasigroup under the multiplication of (Q, ·). Conversely, suppose that (S, ·)
is a quasigroup. In particular, x · y lies in S for x, y in S. Moreover, for given
y and z in S, the unique solution x to

x · y = z (11.13)

in S must agree with the unique solution x to (11.13) in Q. This solution
is z/y. Thus S is closed under the right division. A similar argument shows
that S is also closed under the left division (Exercise 23).

In a quasigroup (Q, ·), closure of a subset S under the multiplication alone
is generally insufficient to make S a subquasigroup. For example, the set
N of natural numbers is closed under the addition operation in the group
(Z, +) of integers, but N does not form a subquasigroup there. For a natural
“nonassociative” example, see Exercise 24.

DEFINITION 11.20 (Quasigroup homomorphism, isomorphism.)
Suppose that (P, ∗) and (Q, ◦) are quasigroups.

(a) A function f : P → Q is a quasigroup homomorphism, denoted by
f : (P, ∗) → (Q, ◦), if

f(x) ◦ f(y) = f(x ∗ y) (11.14)

for all x, y in P .

(b) If a quasigroup homomorphism f : (P, ∗) → (Q, ◦) is bijective, it is
called an isomorphism.

(c) Quasigroups P and Q are isomorphic (written P ∼= Q) if there is an
isomorphism between them.
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Example 11.21 (Inclusion of a subquasigroup.)
Let P be a subquasigroup of a quasigroup (Q, ·). Then the inclusion function

j : P ↪→ Q; x 7→ x

is a quasigroup homomorphism j : (P, ·) → (Q, ·).

The following result is an analogue of Proposition 5.5 (page 96).

PROPOSITION 11.22 (Homomorphisms respect division.)
Let f : (P, ·) → (Q, ·) be a quasigroup homomorphism, between quasigroups

with \ and / as the respective divisions. Then

f(x)\f(y) = f(x\y) and f(x)/f(y) = f(x/y)

for x and y in P .

PROOF Since x · (x\y) = y in (P, ·), the fact that f is a quasigroup
homomorphism implies

f(x) · f(x\y) = f(y)

in Q. However, the unique solution z to the equation f(x) · z = f(y) in Q
is z = f(x)\f(y). Thus f(x)\f(y) = f(x\y), as required. The proof that
f : P → Q preserves right divisions is similar (Exercise 26).

PROPOSITION 11.23 (Componentwise quasigroup structure.)
Let (P, ·) and (Q, ·) be quasigroups. Then the product set P × Q, equipped

with the componentwise multiplication

(x1, x2) · (y1, y2) = (x1 · y1, x2 · y2) ,

forms a quasigroup (P ×Q, ·). In this quasigroup, the left division

(x1, x2)\(y1, y2) = (x1\y1, x2\y2)

and right division

(x1, x2)/(y1, y2) = (x1/y1, x2/y2)

are given componentwise in terms of the left and right divisions on the factors
P and Q.

PROOF Consider the equation

(x1, x2) · (y1, y2) = (z1, z2)
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in P ×Q. For given (y1, y2) and (z1, z2) in P ×Q, i.e., for given y1, z1 in P
and y2, z2 in Q, there is a unique solution

(x1, x2) = (z1/y1, z2/y2)

in P ×Q. The other verifications are similar (Exercise 29).

DEFINITION 11.24 (Product quasigroups.) For quasigroups (P, ·)
and (Q, ·), the quasigroup (P × Q, ·) of Proposition 11.23 is known as the
product of the quasigroups (P, ·) and (Q, ·).
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FIGURE 11.7: Subquasigroups of the product quasigroup P1 × P1.

Example 11.25 (A product of bit string quasigroups.)
Consider the bit string quasigroup P1 = {1, 2, 3}. The product quasigroup

P1 × P1 is displayed in Figure 11.7. Note that ordered pairs such as (3, 1)
are written simply as juxtaposed digits like 31. The straight and curved lines
denote the 3-element subquasigroups, e.g., {11, 23, 32} curving round the top
left-hand corner. Compare with Figure 11.6.
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11.5 Quasigroup homotopies

The previous section discussed various algebraic concepts associated with
quasigroups: substructures, homomorphisms, and products. These concepts
are very similar to the analogous concepts for semigroups, groups, rings, and
the other kinds of algebra encountered in this book. For quasigroups, however,
it turns out that the concepts of homomorphism and isomorphism do not tell
the full story. Consider the quasigroup (Z/3,−) of integers modulo 3 under
subtraction. Its full multiplication table is presented in Figure 11.8.

− 0 1 2

0 0 2 1

1 1 0 2

2 2 1 0

FIGURE 11.8: Subtraction modulo 3.

The quasigroup is not associative, for example

(0− 2)− 1 = 1− 1 = 0 6= 2 = 0− 1 = 0− (2− 1) .

Now consider the bijective function

g : Z/3 → Z/3; x 7→ −x (11.15)

of negation modulo 3. Applying this permutation to the column labels in
Figure 11.8 yields the addition table for the group (Z/3, +) of integers modulo
3, displayed (with an unconventional ordering of the columns) in Figure 11.9.

+ 0 2 1

0 0 2 1

1 1 0 2

2 2 1 0

FIGURE 11.9: Addition modulo 3.
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Note that the bodies of the multiplication tables in Figures 11.8 and 11.9
consist of the same 3× 3 Latin square, even though the second quasigroup is
associative, while the first is not. Since the associativity property is preserved
by quasigroup isomorphisms, it is apparent that the same Latin square has
furnished multiplication tables for quasigroups which are not isomorphic.

Phenomena such as these are captured by the following definition, which
may be contrasted with Definition 11.20.

DEFINITION 11.26 (Quasigroup homotopy, isotopy.) Suppose that
(P, ∗) and (Q, ◦) are quasigroups.

(a) A triple (f, g, h) of functions f : P → Q, g : P → Q, and h : P → Q is
a quasigroup homotopy, denoted by

(f, g, h) : (P, ∗) → (Q, ◦) ,

if
f(x) ◦ g(y) = h(x ∗ y) (11.16)

for all x, y in P .

(b) The functions f , g, h of (a) appearing in the homotopy (f, g, h) are
known as the components of the homotopy.

(c) If the components of a quasigroup homotopy

(f, g, h) : (P, ∗) → (Q, ◦)
are bijective, the homotopy is described as an isotopy.

(d) Quasigroups P and Q are said to be isotopic (written P ∼ Q) if there
is an isotopy between them.

Example 11.27 (Integers modulo 3.)
Consider the set Z/3 of integers modulo 3. Define functions f and h to be

the identity function on the set Z/3. With g : Z/3 → Z/3 as the negation
(11.15) modulo 3, we have

f(x) + g(y) = h(x− y)

for integers x, y modulo 3. Thus

(f, g, h) : (Z/3,−) → (Z/3,+) (11.17)

is an isotopy.

The distinction between homotopy and homomorphism may be seen on
comparing (11.16) with (11.14). In particular:
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PROPOSITION 11.28 (When homotopies are homomorphisms.)
Suppose that (P, ∗) and (Q, ◦) are quasigroups.

(a) A quasigroup homotopy (f, g, h) : (P, ∗) → (Q, ◦) is a homomorphism if
its three components agree: f = g = h.

(b) Each quasigroup homomorphism f : (P, ∗) → (Q, ◦) forms a homotopy
(f, f, f) : (P, ∗) → (Q, ◦).

Composites of homotopies are homotopies.

PROPOSITION 11.29 (Composites of homotopies.)
Suppose that (N, ·), (P, ∗), and (Q, ◦) are quasigroups, with homotopies

(f, g, h) : (P, ∗) → (Q, ◦) and (f ′, g′, h′) : (N, ·) → (P, ∗). Then

(f ◦ f ′, g ◦ g′, h ◦ h′) : (N, ·) → (Q, ◦)

is again a quasigroup homomorphism.

PROOF By respective use of the homotopy property (11.16) of (f, g, h)
and (f ′, g′, h′), we have

(f ◦ f ′)(x) ◦ (g ◦ g′)(y) = f
(
f ′(x)

) ◦ g
(
g′(y)

)

= h
(
f ′(x) ∗ g′(y)

)

= h
(
h′(x · y)

)
= (h ◦ h′)(x · y)

for x, y in N .

COROLLARY 11.30 (Isotopy as an equivalence relation.)
Isotopy forms an equivalence relation on any set of quasigroups.

PROOF By Proposition 11.28(b), the identity map idQ on a quasigroup Q
forms an isotopy. Thus the relation of isotopy is reflexive. Now suppose that
N ∼ P and P ∼ Q for quasigroups N , P , and Q. By Proposition 11.29, the
composite of respective isotopies from N to P and from P to Q is an isotopy
from N to Q, so the relation of isotopy is transitive. Finally, suppose that
(f, g, h) : (P, ∗) → (Q, ◦) is an isotopy. Consider elements x and y in Q, say
with f(x′) = x and g(y′) = y for unique elements x′, y′ of P . By (11.16), we
have

h(x′ ∗ y′) = f(x′) ◦ g(y′) = x ◦ y .

Thus h−1(x ◦ y) = x′ ∗ y′ = f−1(x) ∗ g−1(y), as required to show that(
f−1, g−1, h−1

)
: (Q, ◦) → (P, ∗) is an isotopy. It follows that the relation

of isotopy is symmetric.
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11.6 Principal isotopy

In order to simplify the concept of isotopy as much as possible, the following
definition is useful.

DEFINITION 11.31 (Principal isotopy.)

(a) A quasigroup isotopy

(f, g, h) : (P, ∗) → (Q, ◦)

between quasigroups (P, ∗) and (Q, ◦) is said to be a principal isotopy if
its third component h is the identity map idP : P → P on the set P (and
thus in particular, if the domain set P and codomain set Q coincide).

(a) Two quasigroup structures (Q, ∗) and (Q, ◦) on a common underlying
set Q are said to be principally isotopic if there is a principal isotopy
(f, g, idQ) : (Q, ∗) → (Q, ◦).

Example 11.32

The isotopy (11.17) of Example 11.27 is a principal isotopy.

To within isomorphism, every isotopy is principal:

PROPOSITION 11.33 (Factorizing an isotopy.)
Consider a quasigroup isotopy (f, g, h) : (P, ∗) → (Q, ◦). Use the bijection

h : P → Q to induce a multiplication

x ◦ y = h−1
(
h(x) ◦ h(y)

)

for x, y in P .

(a) The structure (P, ◦) is a quasigroup.

(b) There is an isomorphism h : (P, ◦) → (Q, ◦).

(c) The isotopy (f, g, h) factorizes as the composite

(f, g, h) = (h, h, h) ◦ (
h−1 ◦ f, h−1 ◦ g, idP

)

of the principal isotopy
(
h−1 ◦ f, h−1 ◦ g, idP

)
: (P, ∗) → (P, ◦) together

with the isomorphism h : (P, ◦) → (Q, ◦).
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Verification of the straightforward details in Proposition 11.33 is assigned as
Exercise 39. The composite isotopy in Proposition 11.33(c) may be expressed
symbolically as (P, ∗) ∼ (P, ◦) ∼= (Q, ◦).

Principal isotopy clarifies the relationship between the various quasigroups
obtained with a given Latin square as the body of their multiplication table.

THEOREM 11.34 (Bordering a Latin square.)
Let Q be a finite set. Then two quasigroups (Q, ∗) and (Q, ·) share a Latin

square L(Q) built on Q as the common body of their multiplication tables if
and only if they are related by a principal isotopy (f, g, idQ) : (Q, ∗) → (Q, ·).

PROOF Suppose that Q has n elements x1, . . . , xn. First, suppose that
(Q, ∗) and (Q, ·) share a Latin square L(Q) built on Q as the common body
of their multiplication tables. In other words, there are permutations r′, c′,
r, and c of the set Q such that

r(xn)

r(x1)

c(x1) c(xn)∗

L(Q)

is a multiplication table of (Q, ∗) and

r′(xn)

r′(x1)

c′(x1) c′(xn)·

L(Q)

is a multiplication table of (Q, ·). Then for ξ, η in Q, we have

r′(ξ) · c′(η) = r(ξ) ∗ c(η) .

Substituting ξ = r−1(x) and η = c−1(y), we obtain

r′
(
r−1(x)

) · c′(c−1(y)
)

= x ∗ y (11.18)

for x, y in Q. Define new permutations f = r′ ◦ r−1 and g = c′ ◦ c−1 of Q.
The equation (11.18) becomes f(x) · g(y) = x ∗ y for x, y in Q, yielding the
principal isotopy (f, g, idQ) : (Q, ∗) → (Q, ·).
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Conversely, suppose there is a principal isotopy (f, g, idQ) : (Q, ∗) → (Q, ·).
Thus

f(x) · g(y) = x ∗ y (11.19)

for elements x, y of Q. Let L(Q) be the Latin square on Q which forms the
body of the multiplication table

xn

x1

x1 xn∗

L(Q)

of (Q, ∗). Then by (11.19), the multiplication table of (Q, ·) is

f(xn)

f(x1)

g(x1) g(xn)·

L(Q)

Thus (Q, ∗) and (Q, ·) share the Latin square L(Q) as the common body of
their multiplication tables.

11.7 Loops

Semigroups with an identity element are monoids. Quasigroups with an
identity element are called loops.

DEFINITION 11.35 (Loops, identity element.) A quasigroup (Q, ·)
is said to be a loop if it contains an element e such that

e · x = x = x · e

for all elements x of Q. The element e of Q is called the identity element of
the loop (Q, ·, e).



QUASIGROUPS 307

Groups are certainly loops. Although it is not easy to find natural examples
of nonassociative loops, each Latin square is the body of a multiplication table
of a loop.

PROPOSITION 11.36 (Latin squares are loop tables.)
Let Q be a finite, nonempty set. Let L(Q) be a Latin square built from the

elements of Q. Then L(Q) is the body of the multiplication table of a loop
(Q, ·, e) on the underlying set Q.

PROOF Suppose the Latin square is

L(Q) =




x11 x12 . . . x1n

x21 x22 . . . x2n

...
...

...
xn1 xn2 . . . xnn


 ,

so that the n-element set Q is given as

Q = {x11, x21, . . . , xn1} = {x11, x12, . . . , x1n} .

Then the bordered version

xn1 xn1

x11

x11

x11

x1n

x1n

xnn

. . .

. . .

...
...

·

L(Q)

of the Latin square L(Q) is the multiplication table of a loop (Q, ·, x11) on
the underlying set Q, with x11 as the identity element.

Example 11.37 (Subtraction and addition modulo 3.)
Take Q to be the set of integers modulo 3, and take L(Q) to be the body of

the table of (Z/3,−), as illustrated in Figure 11.8. Then the addition table
modulo 3, as displayed in Figure 11.9, exhibits the construction of the proof
of Proposition 11.36.

Proposition 11.36 shows that each finite, nonempty quasigroup is principally
isotopic to a loop (Exercise 40). However, there is a more direct and general
argument.
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THEOREM 11.38 (Quasigroups are isotopic to loops.)
Let (Q, ·) be a nonempty quasigroup, with left division \ and right division /.
Let a and b be elements of Q. Define a new multiplication ◦ on the set Q by

x ◦ y = (x/b) · (a\y) (11.20)

for x, y in Q. Then (Q, ◦, a · b) is a loop that is principally isotopic to the
quasigroup (Q, ·).

PROOF By Proposition 11.11(a) and (11.6), we have

x ◦ (a · b) = (x/b) · (a\(a · b)) = (x/b) · b = x

for x in Q. Similarly, by Proposition 11.11(c) and (11.5), we have

(a · b) ◦ x =
(
(a · b)/b

) · (a\x) = a · (a\x) = x

for x in Q. Thus (Q, ◦, a · b) is a loop.
Now define

α : Q → Q; y 7→ a · y
and

β : Q → Q; x 7→ x · b .

The maps α and β are bijective, with corresponding inverses

α−1 : Q → Q; y 7→ a\y
and

β−1 : Q → Q; x 7→ x/b

(Exercise 41). By (11.20), the triple

(β−1, α−1, idQ) : (Q, ◦) → (Q, ·)
is an isotopy. Thus

(β, α, idQ) : (Q, ·) → (Q, ◦)
is the required principal isotopy from (Q, ·) to the loop (Q, ◦, a · b).

It is natural to ask why the concept of isotopy does not arise in the study
of groups. The following theorem and its corollary provide an answer.

THEOREM 11.39 (Loop isotopes of groups are groups.)
If a loop is isotopic to a group, then it is isomorphic to that group.

PROOF It suffices to consider the case of a principal isotopy

(f, g, idQ) : (Q, ∗, e∗) → (Q, ◦, e◦)
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from a loop structure (Q, ∗, e∗) on a set Q to a group structure (Q, ◦, e◦) on
Q. Thus

f(x) ◦ g(y) = x ∗ y (11.21)

for elements x, y of Q. Setting y = e∗ in (11.21) yields

f(x) ◦ g(e∗) = x ∗ e∗ = x ,

so that
f(x) = x ◦ g(e∗)−1

in the group (Q, ◦, e◦). Similarly, setting x = e∗ in (11.21) yields

f(e∗) ◦ g(y) = e∗ ∗ y = y ,

so that
g(y) = f(e∗)−1 ◦ y

in (Q, ◦, e◦). Equation (11.21) may now be rewritten in the form

x ◦ g(e∗)−1 ◦ f(e∗)−1 ◦ y = (x ∗ y)

within the group (Q, ◦, e◦). Multiplying from the left by f(e∗)−1, and from
the right by g(e∗)−1, we obtain

f(e∗)−1 ◦ x ◦ g(e∗)−1 ◦ f(e∗)−1 ◦ y ◦ g(e∗)−1

= f(e∗)−1 ◦ (x ∗ y) ◦ g(e∗)−1 .
(11.22)

Consider the invertible map

θ : Q → Q; x 7→ f(e∗)−1 ◦ x ◦ g(e∗)−1

(compare Exercise 42). Written in terms of θ, the equation (11.22) becomes

θ(x) ◦ θ(y) = θ(x ∗ y) .

Thus θ : (Q, ∗, e∗) → (Q, ◦, e◦) is the required isomorphism.

COROLLARY 11.40 (Isotopic groups.)
If two groups are isotopic, then they are isomorphic.

The final concern of this chapter is to resolve a critical issue that arose in
Section 11.2:

Can each Latin square be given suitable row and column labels so
that it becomes the body of a group multiplication table?
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(A positive answer would suggest that the study of quasigroups could be
reduced to a study of groups.) By Theorem 11.34, the question is equivalent
to asking whether each finite quasigroup is principally isotopic to a group.
By Theorem 11.38 and the transitivity of the isotopy relation, the question
reduces to asking whether each finite loop is principally isotopic to a group.
Finally, by Theorem 11.39, the question becomes: are there any finite loops
that are not associative?

There is a unique loop with identity 0 on the set {0, 1}, the group (Z/2, +).
Now consider a loop of order 3, on the set {0, 1, 2}. With the natural ordering
of the row and column labels, the body of the multiplication table becomes
the incomplete Latin square

0 1 2
1 a
2

There are apparently two choices for the element a, namely 0 or 2. However,
in the former case, there is no way to complete the Latin square, since the
completion procedure stalls at

0 1 2
1 0 2
2

On the other hand, choosing a = 2 forces a unique completion to the Latin
square

0 1 2
1 2 0
2 0 1

that gives the multiplication table of the group (Z/3,+). So loops of order
3 are associative. In Exercise 43, you are asked to apply similar techniques
to show that each loop of order 4 is associative. However, the loop whose
multiplication table is displayed in Figure 11.10 is not associative, since any
group of order 5 is commutative.

· 0 1 2 3 4

0 0 1 2 3 4

1 1 4 3 0 2

2 2 0 4 1 3

3 3 2 0 4 1

4 4 3 1 2 0

FIGURE 11.10: A nonassociative loop of order 5.



QUASIGROUPS 311

11.8 Exercises

1. Show that the integers form a nonassociative quasigroup (Z,−) under
subtraction.

2. The geometric mean of two positive real numbers x and y is

x ∗ y =
√

xy . (11.23)

Show that under the multiplication ∗ of (11.23), the set of positive real
numbers forms a nonassociative quasigroup.

3. Let Q be the set of negative real numbers.

(a) Show that (11.23) is defined for x, y in Q.

(b) Show that (11.23) does not give a quasigroup multiplication on Q.

4. (a) Show that for a natural number r, the set Pr of nonzero bit strings
of length r + 1 is closed under the multiplication ∗ of (11.3).

(b) Show that for a positive integer r, the quasigroup Pr is not a group.
(Hint: Consider the properties of the identity element of a group.)

5. Write out the multiplication tables for the quasigroups P1 and P2 of
Example 11.4.

6. Find values for the unknowns a, b, c, d from the integers modulo 4 so
that

a b c d

0 0 3 2 1

1 1 0 3 2

2 2 1 0 3

3 3 2 1 0

becomes the addition table for the group (Z/4, +).

7. Let (Q, ·) be a finite, nonempty quasigroup. Show that the body of the
multiplication table of (Q, ·) forms a Latin square.

8. Complete the proof of Theorem 11.5.

9. Without directly using tables of group addition or subtraction, construct
a 5× 5 Latin square.
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b

a

a

b

FIGURE 11.11: An intercalate in a Latin square.

10. In a Latin square, an intercalate is a configuration of four entries at the
intersection of two rows and two columns, containing just two distinct
elements a and b (Figure 11.11).

(a) Show that interchanging the entries a and b of an intercalate within
one Latin square creates a new Latin square.

(b) Let t be an element of a finite group G, with t2 = 1 6= t. Show
that the multiplication table body of G contains an intercalate with
entries 1 and t.

(c) Use intercalates to create new quasigroups of order 6 from each
group of order 6. Which of the new quasigroups are not associative?

11. Let (A,+) be an additive group, considered as a quasigroup with + as
the quasigroup multiplication. Write the corresponding left division in
terms of addition, subtraction, and negation.

12. Verify that (11.7) holds in each bit string quasigroup Pr. (Hint: There
are two cases to consider, x = y and x 6= y.)

13. Verify that the equations (11.8) hold in a group.

14. Prove Proposition 11.11(c),(d).

15. Complete the proof of Proposition 11.12.

16. Complete the proof of Theorem 11.13.
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17. Suppose that (Q, ·) is the quasigroup with multiplication table

· 0 1 2 3

0 0 3 1 2

1 1 2 3 0

2 2 1 0 3

3 3 0 2 1

Determine the multiplication tables for the quasigroups (Q, \) and (Q, /).

18. Verify Proposition 11.15.

19. A quasigroup (Q, ·) is said to be commutative if x ·y = y ·x for all x, y in
Q. Show that a quasigroup is commutative if and only if right division
is the opposite of left division.

20. Show that a bit string quasigroup Pr (compare Example 11.4) coincides
with each of its conjugates.

21. How many distinct conjugates does the group (Z, +) of integers possess?

22. Consider Figure 11.6.

(a) How many distinct 3-element subquasigroups are displayed in the
figure?

(b) Show that knowledge of the 3-element subquasigroups, along with
the observation that x ∗ x = x for each element x, specifies the
multiplication ∗ in (P2, ∗) completely.

23. Complete the proof of Proposition 11.19.

24. Consider the closed unit interval I = [0, 1], the set of real numbers from
0 to 1.

(a) Show that I is closed under the multiplication ◦ of the arithmetic
mean quasigroup (R, ◦) of Example 11.3.

(b) Show that I does not form a subquasigroup of the arithmetic mean
quasigroup (R, ◦).

25. Let (G, ·) be a group, and let S be a nonempty subset of G. Show that
S forms a subgroup of (G, ·) if and only if it forms a subquasigroup of
the quasigroup (G, ·).

26. In the context of Proposition 11.22, show that the quasigroup homo-
morphism f : (P, ·) → (Q, ·) preserves right divisions.
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27. Show that the arithmetic mean quasigroup (R, ◦) of Example 11.3 is
isomorphic to the geometric mean quasigroup of Exercise 2.

28. Suppose that a quasigroup Q is isomorphic to a group G. Show that Q
is associative.

29. Complete the proof of Proposition 11.23.

30. Let P and Q be quasigroups. Show that the projections

p1 : P ×Q; (x1, x2) 7→ x1

and
p2 : P ×Q; (x1, x2) 7→ x2

are quasigroup homomorphisms.

31. Let X be a set, and let (Q, ·) be a quasigroup. Show that the set QX of
functions f : X → Q from X to Q carries a componentwise quasigroup
structure (QX , ·), with

(f · g)(x) = f(x) · g(x)

for f , g in QX and x in X.

32. Consider Figure 11.7.

(a) How many distinct 3-element subquasigroups are displayed in the
figure?

(b) Show that knowledge of the 3-element subquasigroups, along with
the observation that x ∗ x = x for each element x, specifies the
multiplication ∗ in (P1 × P1, ∗) completely.

33. Consider the product of the arithmetic mean quasigroup (R, ◦) with
itself — compare Example 11.3.

(a) Give a geometric interpretation of the product quasigroup structure
(R2, ◦) on the Cartesian plane R2.

(b) Give a geometric interpretation of right division in the product
quasigroup structure (R2, ◦) on the Cartesian plane R2. (Hints:
Compare Example 11.10. Recall the two types of reflection in the
plane, point reflections and line reflections.)

34. Consider the quasigroup (Z/3,−) of integers modulo 3, with subtraction
as the quasigroup multiplication. Show that the product

(Z/3,−)× (Z/2, +)

of (Z/3,−) with the cyclic group (Z/2, +) is isomorphic to the quasi-
group (Z/6,−) of integers modulo 6 under subtraction.
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35. Show that the quasigroup of integers under subtraction is isotopic to
the group of integers under addition.

36. Show that the arithmetic mean quasigroup (R, ◦) of Example 11.3 is
isotopic to the additive group (R,+) of real numbers.

37. Show that the conjugates of a group are isotopic.

38. Let Q be a set. Show that principal isotopy forms an equivalence relation
on the set of quasigroup structures (Q, ·) on Q.

39. Verify the details of Proposition 11.33.

40. Use Proposition 11.36 to show that each finite, nonempty quasigroup is
principally isotopic to a loop.

41. In the proof of Theorem 11.38, show that the maps α and β are bijective.

42. Show that the map θ : Q → Q used in the proof of Theorem 11.39 is
invertible.

43. Show that each 4×4 Latin square is the body of the multiplication table
of a group.

44. Use intercalates (compare Exercise 10) to show that there are other
nonassociative loops on the set {0, 1, 2, 3, 4}, besides the one displayed
in Figure 11.10.

11.9 Study projects

1. Quasigroups and Latin squares as experimental designs.

(a) A housing association is conducting an experiment to determine
the best kind of wall siding to use for its houses: concrete, metal,
plastic, or wood. For the experiment, it has houses, numbered
1, 2, 3, 4, at four different locations, with different climates and
atmospheric conditions. Each house has walls facing in each of
the cardinal directions: north, south, east, and west. How should
the different kinds of siding be applied for the experiment, so that
each kind of siding is tested on each house, and on each direction
of wall?
Set up a bordered 4× 4 Latin square to plan how the experiment
should be conducted. The house addresses from 1 to 4 should label
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the rows. The four directions should label the columns. The body
should be a Latin square on the 4-element set

{concrete, metal, plastic, wood}
of siding types. The table entry in the row labeled i and column
labeled d should indicate which type of siding is to be applied to
the wall facing direction d on house number i.

(b) There are 7 students enrolled in a one-quarter algebra class. In
each of 7 weeks of the course, the instructor wishes to designate
a group of 3 students to prepare a special presentation. In order
to assess everybody fairly, each student should be grouped exactly
once with each other student. Use the bit-string quasigroup P2 of
Figure 11.6 to prepare an assignment plan for the instructor. Note
that each student is involved in 2 different group presentations.

(c) Repeat the exercise of (b) for the case of 9 students in 12 groups of
3, during a one-semester course. Which quasigroup should be used
in this case? In how many presentations is each student involved?

(d) If n students are to be assigned to t groups of 3, with each pair of
students appearing in exactly one group as in (b) and (c) above,
show that

n− 1
2

= t

and
n(n− 1)

2
= 3t .

(e) Conclude that an assignment plan for n students is only possible
if n is congruent to 1 or 3 modulo 6.

2. Orthogonal Latin squares.

Let Q be a nonempty set with a finite number n of elements. Two
Latin squares L1(Q) and L2(Q) on the set Q are said to be (mutually)
orthogonal , if for each ordered pair (x1, x2) of elements of Q, there are
unique integers 1 ≤ i, j ≤ n such that for k = 1, 2, the element xk

appears in the i-th row and j-th column of Lk(Q). A pair of orthogonal
Latin squares is displayed in Figure 11.12.

(a) Let (Q, ∗) and (Q, ◦) be quasigroup structures on the given set
Q. Suppose that L∗(Q) and L◦(Q) are the respective bodies of
the multiplication tables of (Q, ∗) and (Q, ◦), presented with a row
and column labeling that is the same for each table. Show that the
Latin squares L∗(Q) and L◦(Q) are orthogonal if and only if the
function

Q×Q → Q×Q; (x, y) 7→ (x ∗ y, x ◦ y)

is bijective.
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L1 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

L2 0 1 2
0 0 2 1
1 1 0 2
2 2 1 0

FIGURE 11.12: A pair of orthogonal Latin squares.

(b) What quasigroup structures on the 3-element set Z/3 of residues
modulo 3 correspond to the orthogonal Latin squares displayed in
Figure 11.12?

(c) Let p be a prime number. Let l and m be distinct nonzero residues
modulo p. Show that the quasigroups (Z/p, ∗) with

x ∗ y = x + ly

and (Z/p, ◦) with
x ◦ y = x + my

yield mutually orthogonal Latin squares on Z/p.

(d) Let F be a finite field. Let l and m be distinct nonzero elements
of F . Show that the quasigroups (F, ∗) with

x ∗ y = x + ly

and (F, ◦) with
x ◦ y = x + my

yield mutually orthogonal Latin squares on F .

3. Left and right multiplications.

Let (Q, ·) be a quasigroup. By analogy with (5.16), define a map

λq : Q → Q; x 7→ q · x (11.24)

for each element q of Q. This map is known as left multiplication by the
element q. Similarly, define the right multiplication

ρq : Q → Q; x 7→ x · q (11.25)

for each element q of Q.

(a) Show that the respective identities (IL), (IR) of Proposition 11.12
imply the injectivity of the left and right multiplications λx, ρx.

(b) Show that the respective identities (SL), (SR) of Proposition 11.12
imply the surjectivity of the left and right multiplications λx, ρy.
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(c) Conclude that in the quasigroup (Q, ·), each left multiplication
(11.24) and right multiplication (11.25) is a permutation of Q.

(d) Consider the case where (Q, ·) is the quasigroup (Z/n,−) of integers
modulo a positive integer n, under subtraction. Show that the set

{λx, ρx | x in Z/n}

forms a group of permutations on Z/n, isomorphic to the dihedral
group Dn of Study Project 3 in Chapter 4.

(e) Show that a quasigroup (Q, ·) is associative if and only if the map

λ : Q → Q!; q 7→ λq

is a quasigroup homomorphism.

11.10 Notes

Section 11.3

The symbols / and \ are often used within mathematical software in the
same sense as in Definition 11.6. Thus if A and B are invertible (square)
matrices, A/B may denote the matrix AB−1, while A\B is used for A−1B —
compare (11.8). The notation is extended to denote solutions to equations.
For example, the solution x of the vector equation Ax = y is written as
x = A\y.

Conjugates of a quasigroup are sometimes described as “parastrophes.”
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